

Annual International Training Course (AITC) 2023

The application of a parabolic greenhouse solar dryer together with raw material preparation techniques to extend shelf-life and enhance quality of agricultural products

24 April - 5 May 2023

Lecture 7_27 April 2023 Production of osmotic dehydration fruits using a solar dryer and a tray dryer

Asst. Prof. Dr. Busarakorn Mahayothee Department of Food Technology Faculty of Engineering and Industrial Technology Silpakorn University, Nakhon Prathom Thailand

Email: busarakornm@yahoo.com

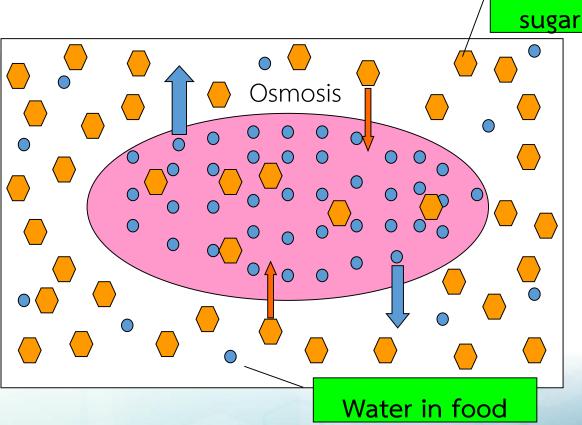
www.foodtech.eng.su.ac.th

Production of dried tomato

General Process of osmotic dehydrated Products

Raw materials: Fruits

Raw materials preparations: Selection, Cleaning, Washing, Sanitization, Peeling, Trimming, Slicing, Pretreatment: dipping in pretreatment solution such as calcium chloride, acid and or sulfiting agents, blanching and sugaring by dipping fruit slices into osmotic solution Drying or Dehydration: Greenhouse Solar dryer or tray dryer Osmotic dehydrated Products


Packaging and Storage

Osmotic dehydration

lychee in sugar solution

Sulfite agents

Sulphur dioxide

Sodium sulphite

Sodium bisulphite

Sodium metabisulphite

Potassium metabisulphite

Potassium bisulphite

Potassium sulphite

No SO_2 with SO_2

Osmotic dehydration

Papaya - lycopene pigment (red color of flesh)

Raw materials selection

Ripening

- optimum variety - optimum maturity

Osmotic dehydration

Processing steps

Washing/ Peeling

Cutting/ Deseeding

Osmotic dehydration

Processing steps

Cutting in cube

Dipping in mixed solution of calcium chloride and malic acid

Osmotic dehydration

Processing steps

Blanching Dipping in mixed solution of sugar and malic acid

Osmotic dehydration

Processing steps

Drying in a Tray Dryer

Osmotic dehydrated air dried Product

Production of osmotic dehydrated mango

Matured mango at optimum ripening

Peeling

Production of osmotic dehydrated mango

Processing steps

Slicing

CaCl₂+ Acid pretreatment

Blanching

Production of osmotic dehydrated mango

Processing steps

Immerse in osmotic solution (sugar solution)

Osmotic dehydrated slices

Production of osmotic dehydrated mango

Processing steps

Drying using a conventional tray dryer or a greenhouse solar dryer

Production of osmotic dehydrated mango

Major quality criteria impact on quality of osmotic dehydrated product: Total sugar/Reducing sugar ratio (TS/RS) of osmotic dehydrated mango slices after sugar immersion and prior to the drying process

<u>Sucrose + fructose + glucose (TS)</u> Fructose + glucose (RS) TS/RS ratio

Moisture content 12-15%

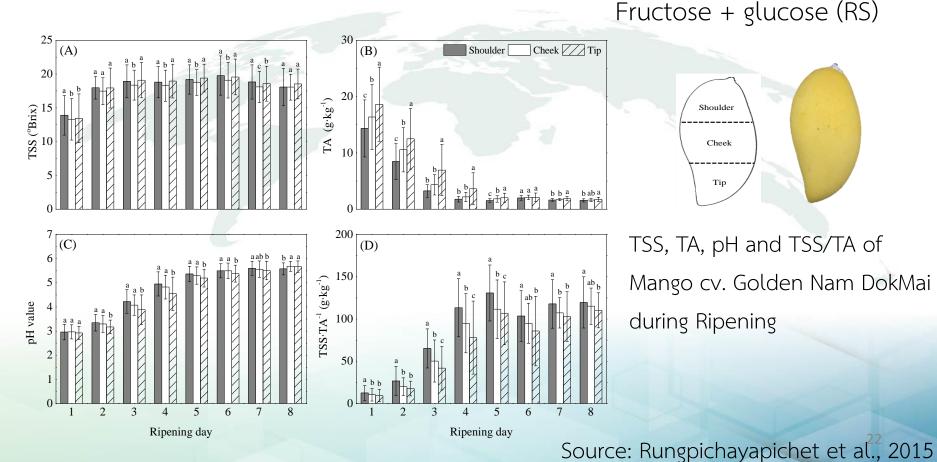
Factors influencing the quality and shelf-life of

osmotic dehydrated mango

Too high TS/RS ratio, the product will get the thin whilte sugar crystal on the surface and the texture of product will be hard

Total sugar/Reducing sugar Ratio (TS/RS)

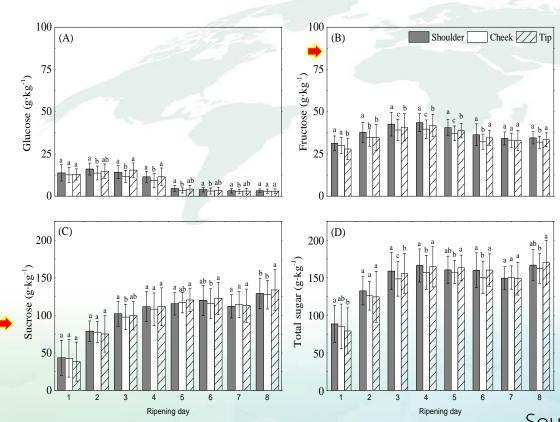
Too low TS/RS ratio, the product will get more sticky and drying time increase



Factors influencing the quality and shelf-life of osmotic

dehydrated mango

TS/RS ratio


<u>Sucrose + fructose + glucose (TS)</u>

Factors influencing the quality and shelf-life of osmotic

dehydrated mango

D1 D2 D3 D4 D5 D6 D7 D8

Glucose, fructose, sucrose and total sugar of Mango cv. Golden Nam DokMai during Ripening

Source: Rungpichayapichet et al., 2015

Factors influencing the quality and shelf-life of osmotic

dehydrated mango

Factor effect on the TS/RS ratio

- PH of the osmotic solution
- Type of sugar used for preparing osmotic solution (OS)
- Concentration of reducing sugar in OS
- Blanching temperature and time
- Amount of acid and the step for adding acid into the OS

Factors influencing the quality and shelf-life of osmotic dehydratedfruits contain anthocyaninsImpact of adding sulfiting agentStrawberry- anthocyanin pigment (red color)

KMS 400 ppm

No Potassium metabisulfite (KMS)

+ KMS 400 ppm

Factors influencing the quality and shelf-life of osmotic dehydrated fruits contain anthocyanins

Fresh mulberry

Osmotic dehydrated mulberry

Factors influencing the quality and shelf-life of osmotic dehydrated

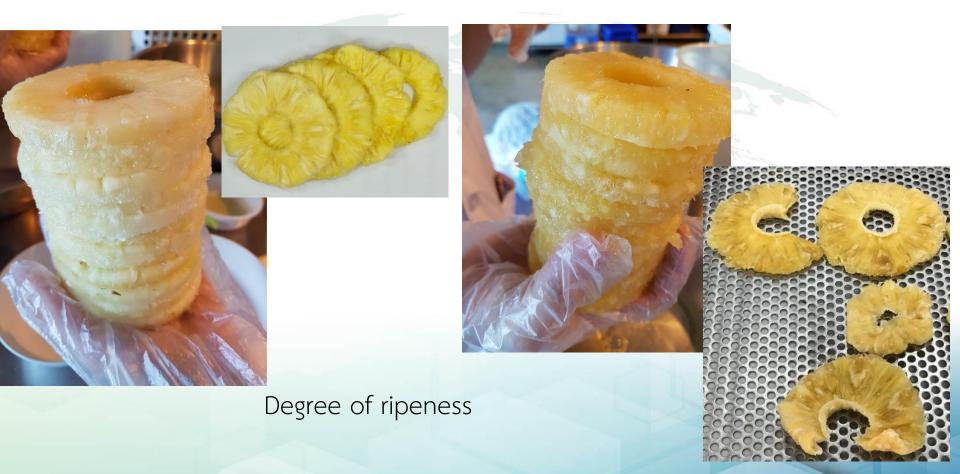
fruits contain anthocyanins Mulberry

Factors influencing the quality and shelf-life of osmotic dehydrated

fruits contain anthocyanins Mulberry

Without osmotic dehydration pretreatment

With osmotic dehydration pretreatment


Factors influencing the quality and shelf-life of osmotic dehydrated fruits contain anthocyanins

Osmotic dehydrated mulberry

Factors influencing the quality and shelf-life of osmotic dehydrated fruits

REFERENCES

Rungpichayapichet Parika, Busarakorn Mahayothee, Pramot Khuwijitjaru, Marcus nagle, Joachim Müller. 2015. Non-destructive determination of β -carotene content in mango by near-infrared spectroscopy compared with colorimeteric measurements. Journal of Composition and Analysis.

THANK YOU FOR YOUR ATTENTION

