

# Principle of drying of agricultural products.

#### **SARAWUT PHUPAICHITKUN**

Material Science and Engineering Faculty of Industrial Technology and Engineering Silpakorn University



### **Principle of drying**

- Dryer: Parabolic Solar Dryer System
- Materials: Agricultural Products
- Principle of Drying:
  - Removed water from product
    - Water (moisture content) / Dry Solid
  - Key substances (active ingredients):
    - Pharmacy / Bioactive / Food Ingredients (dry basis concentration)
  - Effect of drying factors:
    - External factors: Thermodynamic parameters in dryer
    - Internal factors: Physical structures of product



- Water in Products
  - Free water:
    - Using thermodynamic data of pure water
  - Bound water (able to move):
    - Solutions (thermodynamic properties depending on concentration and solubility)
    - In depth water (in close pore, water proof membrane, can't remove by heat or without breaking structure)
  - Strong bound water (can't move):
    - Bound on solid surface (required heat of solution or sorption/desorption)
    - Inner structure of solid part





- Water mobility
  - Gas phase: Water in Air (%RH)
    - Gas Diffusion (Diffusion in void / convective in flow)
  - Liquid phase: Water in solution (call hydrophilic phase)
    - Water in Solution (solvent in solution)
    - Diffuse in Gel / Sol-Gel
    - Solution in Pore structure / Diffuse through Membrane
  - Solid phase: high concentrated solution and bound with the dry solid
    - Water in dry product / close pore / nucleus of cell
    - Required high energy and destroy product structure in some case



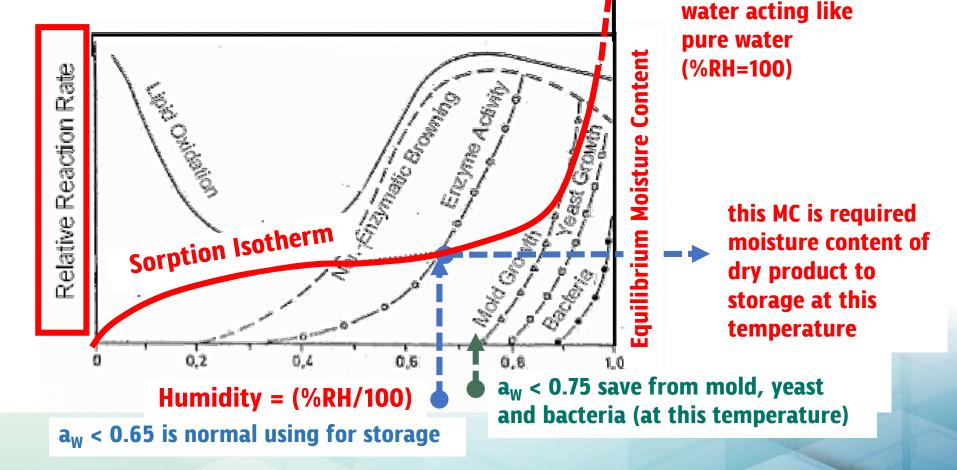
- Water remove from product to the air
  - Boiling
    - Temp. > Boiling Point at atmospheric pressure
    - Vapor Pressure of water at 100 °C equals 1 atm. (1000 mbar)
  - Evaporation
    - all temp. (from freezing point to boiling point)
    - Heat of evaporation is about 2,501 kJ/kg at 0 °C
    - Heat of evaporation is about 2,256 kJ/kg at 100 °C
  - Sublimation
    - System Pressure < Vapour pressure at atmospheric temp.
    - Vapor pressure of water at 0 °C equals 6.1 mbar
    - Vapor pressure of water at -20 °C equals 1.03 mbar



- Various of Moisture Content
  - Wet basis (%MC<sub>wb</sub>):
    - % MC<sub>wb</sub> = (wt. of water / total wt.) x 100
  - Dry basis (X):
    - total wt. = wt. of water + wt. of dry solid
    - wt. of dry solid is constant during drying.
    - X = wt. of water / wt. of dry solid
    - X = %MC / (100-%MC)

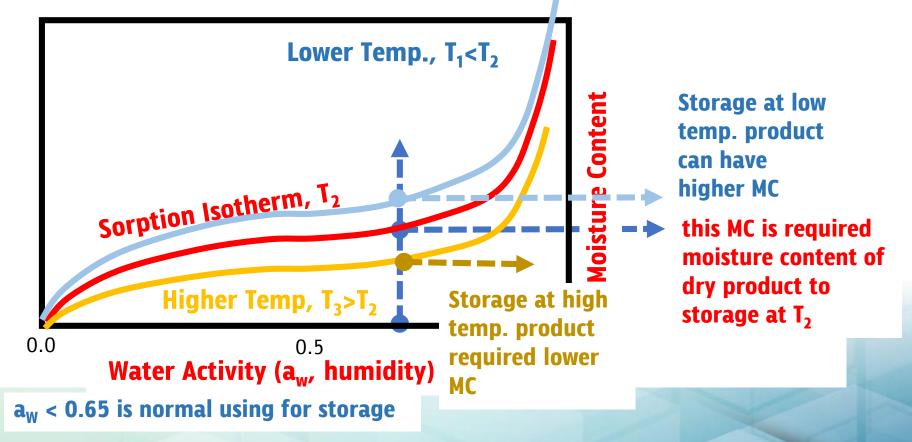


### **Principle of drying : Water in Products**


#### Various of Moisture Content

- Moisture Ratio (MR):
  - %MC<sub>eq</sub> is equilibrium moisture content (at the certain Pressure, Temperature and Relative Humidity, %RH)
  - Wet basis:  $MR_A = \%MC_t / \%MC_{0'}$  $MR_B = (\%MC_t - \%MC_{eq}) / (\%MC_0 - \%MC_{eq})$
  - Dry basis:  $MR_A = X_t / X_{0'}$  $MR_B = (X_t - X_{eq}) / (X_0 - X_{eq})$
  - MR start from 1 and convergence to %MC<sub>eq</sub>/%MC<sub>0</sub> (A-case) or 0 (B-case)

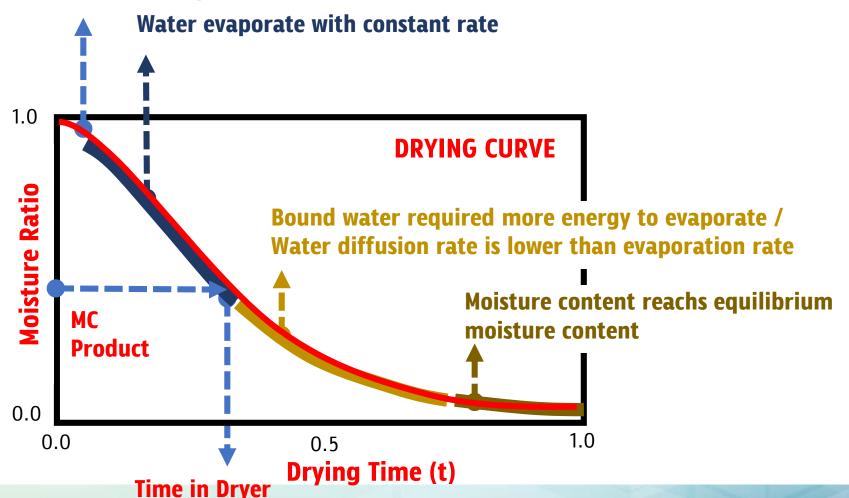
### **Principle of drying : MC of dry product**


#### • Equilibrium Moisture Content (%MC<sub>eq</sub>, EMC)

- Labuza's Work (1972) :
  - Water activity (a<sub>w</sub>) is Humidity (%RH/100) inside the close system at constant temperature.



### **Principle of drying : MC of dry product**


- Application of Sorption Isotherm (a<sub>w</sub> vs MC<sub>eq</sub>)
  - Storage dry products:
    - Design storage temperatures (T<sub>1</sub> < T<sub>2</sub> < T<sub>3</sub>)

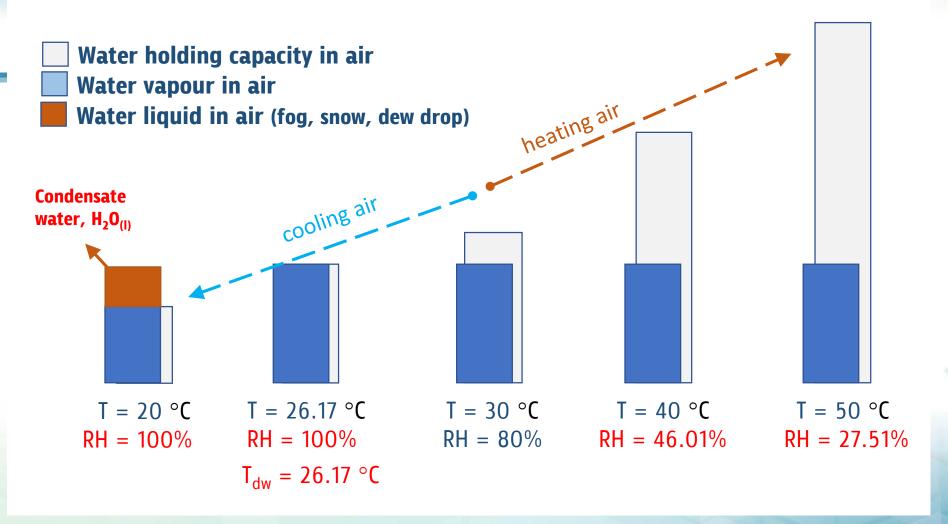


### **Principle of drying : Drying Stage**

#### • Simple hot air dryer

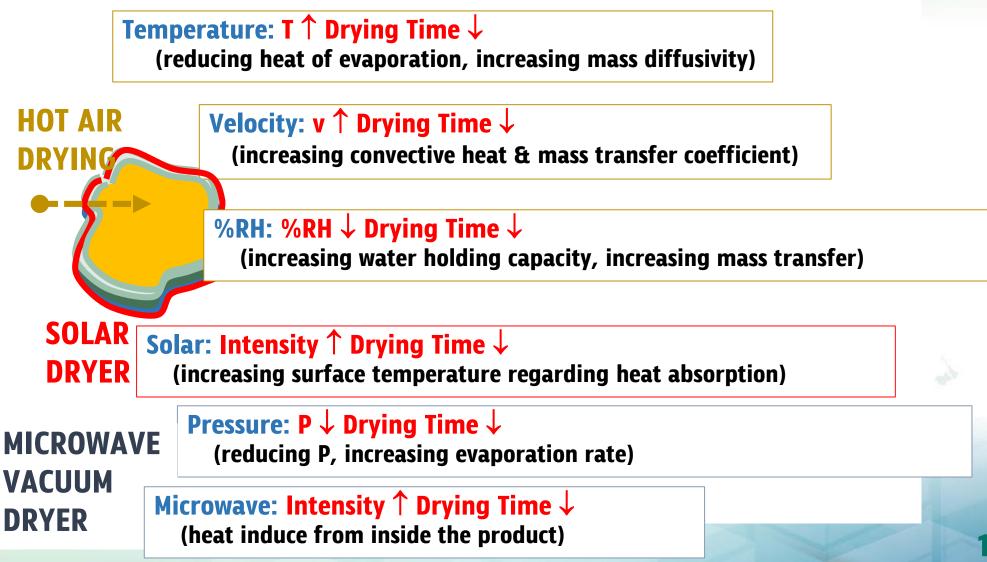
Surface temperature is lower than that of hot air






### **Principle of drying: External Factors**




### **Principle of drying: External Factors**

### • Factors: %Relative Humidity (P<sub>water</sub>/P<sub>water,sat</sub> x 100)



### **Principle of drying: External Factors**

#### • Factors:



### **Principle of drying: Water Properties**

- Thermodynamic parameter of pure water (free water)
  - Size: 2.75 Angstrom, A° (0.275 nm, 2.75x10<sup>-10</sup> m)
  - Boiling point: 100 °C (at atmospheric pressure, 1 atm)
  - Freezing point: 0 °C (1 atm)
  - Liquid
    - Density: 997.77 kg/m<sup>3</sup> at 22 °C
    - Heat Capacity: 4,184 J/kg-K at 20 °C
    - Heat Conductivity: 0.598 W/m·K at 20 °C
  - Ice
    - Density: 920 kg/m<sup>3</sup> at <0 °C
    - Heat Capacity: 2,093 J/kg-K.
    - Heat Conductivity: 2.18 W/m·K
  - Gas (Water Vapor)
    - Density: 0.598 kg/m<sup>3</sup>
    - Heat Capacity: 1,864 J/kg-K
    - Heat Conductivity: 0.020 W/m·K

#### Air

Density: 1.293 kg/m<sup>3</sup> Heat Capacity: 1,005 J/kg-K Heat Conductivity: 0.0262 W/m·K

#### Moist Air (100% RH, 25°C)

Density: 1.17 kg/m<sup>3</sup> kg\_water/kg\_dry air = 0.0201

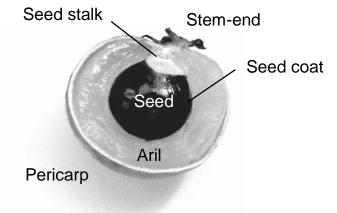
### **Principle of drying Water Properties**

- Transportation properties: Diffusivity (m<sup>2</sup>/s)
  - Water diffusivity in Air
    - 2.42x10<sup>-5</sup> m<sup>2</sup>/s at 20°C

- Water diffusivity in Sugar solution
  - Self-diffusion 2.299x10<sup>-9</sup> m<sup>2</sup>/s
  - Using equi-molar diffusion (sugar and water)
    - 5x10<sup>-10</sup> m<sup>2</sup>/s (sucrose) 6.6x10<sup>-10</sup> m<sup>2</sup>/s (glucose)

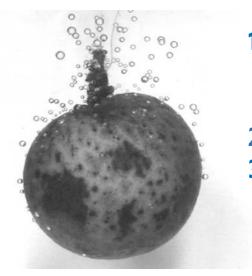
#### **Water Diffusivity**

- Corn (3.27 x 10<sup>-7</sup>)
- Beef Sausage (1.13 x 10<sup>-7</sup>)
- Malt (8.73 x 10<sup>-8</sup>)
- Cheese (2.02 x 10<sup>-8</sup>)
- Carrot (2.05 x 10<sup>-9</sup>)
- Broccoli (1.29 x 10<sup>-9</sup>)
- Apple (6.64 x 10<sup>-10</sup>)
- Milk Powder (6.58 x 10<sup>-10</sup>)
- Beef (5.6 x 10<sup>-10</sup>)
- Corn starch (2.25 x 10<sup>-10</sup>)
- Rice grain (1.53 x 10<sup>-11</sup>)
- Potato starch (6.91x10<sup>-12</sup>)
- Water diffusion in solid <  $10^{-15}$  m<sup>2</sup>/s

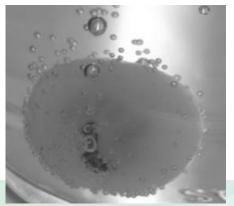

Sources: Transport Properties of Foods, George D. Saravacos and Zacharias B. Maroulis

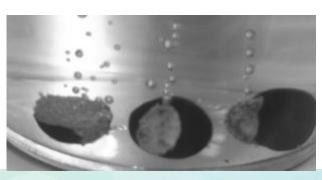


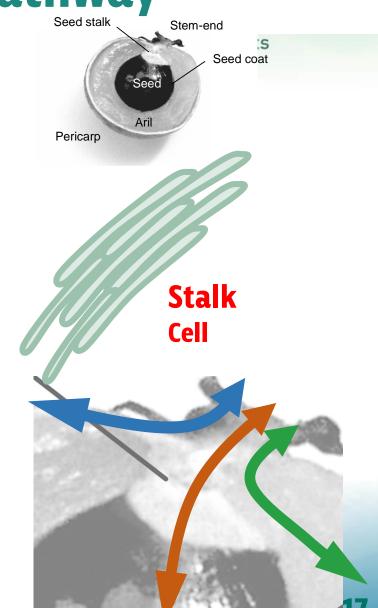


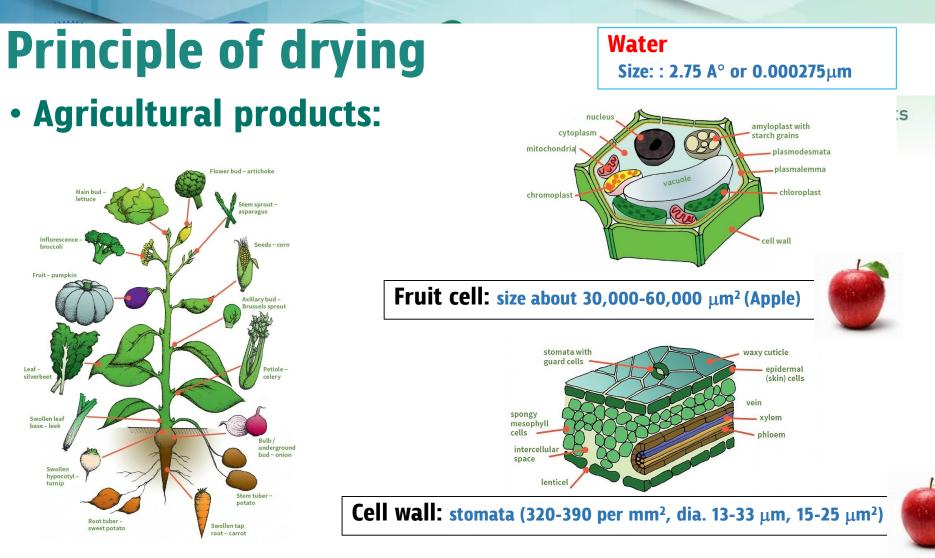

### Principle of drying: Water pathway

- Longan case:
  - Initial Moisture Content
    - Seed ~ 40%
    - Aril ~ 80%
    - Peel ~ 30-40%
    - Whole fruit ~ 70%
    - How the moisture content of each part can be different value?





# Principle of drying: Water pathway


- Drying Experiment:
  - Immerge in Silicon Oil
  - Using Vacuum Dryer




 Water can transport at seed stalk and some surface area
Seed Coat is water proof
There are special stalk cell for each part



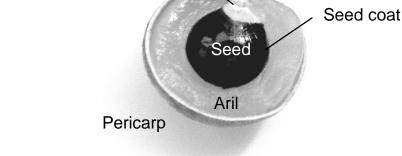






Nearly 97 % of water from plants is lost through stomatal transpiration, so the more stomata, the higher the transpiration rate.

**Sources:** [1]-[4]



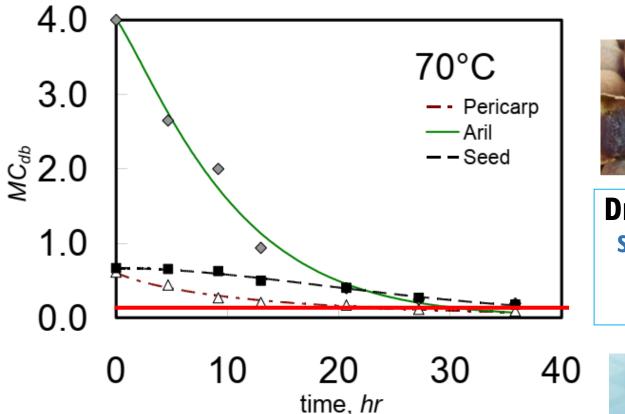

Stem-end

### Principle of drying: Water pathway

#### • Longan case:

- Initial Moisture Content
  - Seed ~ 40%
  - Aril ~ 80%
  - Peel ~ 30-40%
  - Whole fruit ~ 70%




Seed stalk

- How the moisture content of each part can be different value?
- Drying Time
  - Seed ~ 4 hr.
  - Aril ~ 8 hr.
  - Peel ~ 2 hr.
  - Whole fruit >32 hr (~ 72 hr.)
  - Why the whole fruit need very long drying time ? (customer need this)



# Principle of drying: Water pathway

#### Drying whole longan (Drying curve of each part)



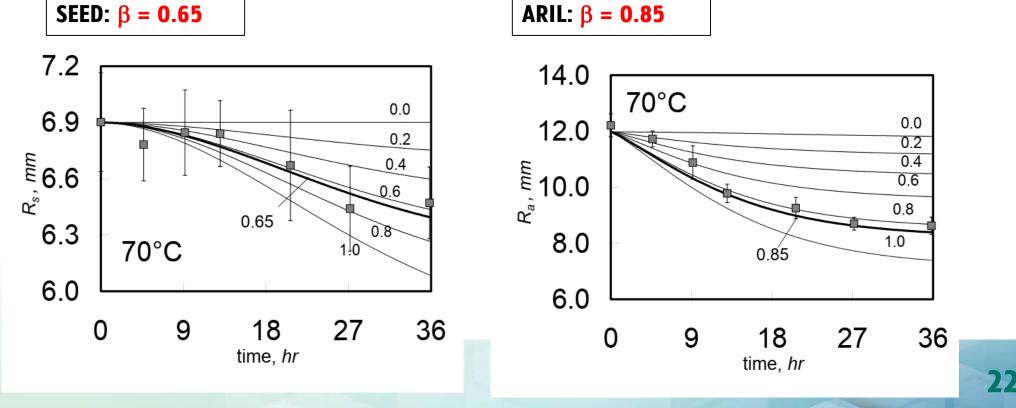


Dry whole longan Specification: MC<sub>wb</sub> = 12% X=0.13



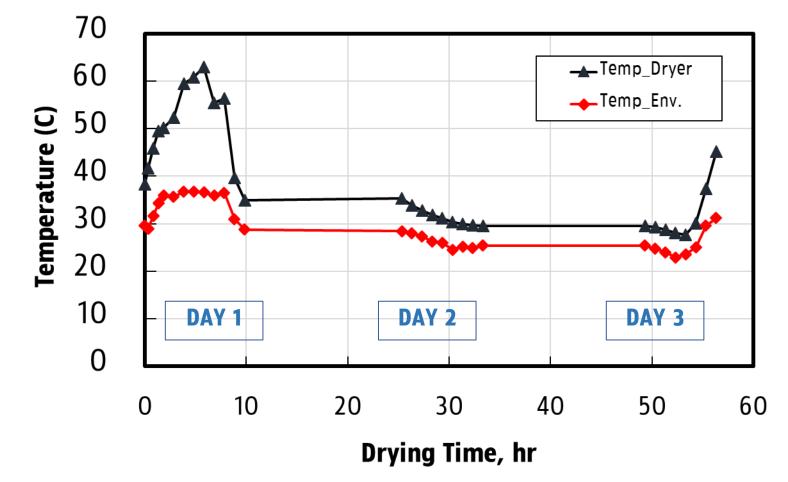
21

### Principle of drying: Water pathway


#### Drying whole longan (shrinkage effect of seed and aril)

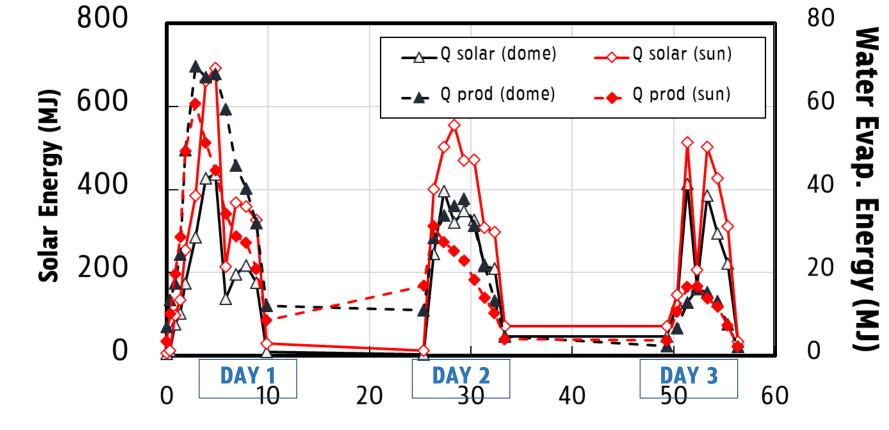





### Principle of drying: Water pathway

#### Drying whole longan (shrinkage effect of seed and aril)

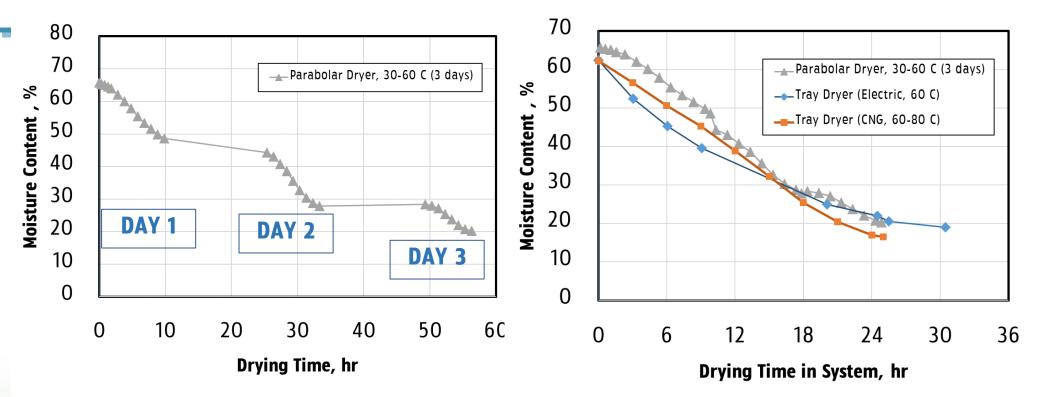



### **Drying Curve in Parabolic Solar Dryer**

#### • Osmotic dehydrated tomato (8x20.8 m<sup>2</sup>, 1.3 tons fresh)



### **Drying Curve in Parabolic Solar Dryer**


#### • Osmotic dehydrated tomato (8x20.8 m<sup>2</sup>, 1.3 tons fresh)



Drying Time, hr

### **Drying Curve in Parabolic Solar Dryer**

#### • Osmotic dehydrated tomato (8x20.8 m<sup>2</sup>, 1.3 tons fresh)



### **Principle of drying**

- Preparation before drying:
  - What's dry product?
    - Quality, Quantity and Geometry (ex: whole fruit or cutting).
    - Pretreatment before drying process.
  - What's the storage temperature?
    - Preparing for Sorption Isotherm
  - What's the moisture content of final product?
    - Required Sorption Isotherm
  - How long does it drying?
    - Required Drying Curve (to estimate the drying time)
  - Regarding to Parabolic Solar Dryer
    - Velocity is very low, water vapour (%RH) was removing by the fan, and temperature depending on weather.
    - For controlling the quality, you might understand the water pathway from the product during drying.

S



### **Sources:**

- [1] https://www.postharvest.net.au/postharvest-fundamentals/vegetable-physiology/structure-and-composition/
- [2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685799/
- [3] https://www.researchgate.net/figure/Stomatal-size-and-distribution-in-cv-Fuerte-avocado-fruit-in-relation-toits\_tbl1\_267220198
- [4] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301182/#:~:text=Stomata%20also%20varied%20 widely%20in,from% 2019.1%20to%2071.5%20%CE%BCm.
- https://www.intechopen.com/chapters/68496
- <a href="https://www.rotronic.com/en/humidity\_measurement-feuchtemessung-mesure\_de\_l\_humidite/humidity-calculator-feuchterechner-mr">https://www.rotronic.com/en/humidity\_measurement-feuchtemessung-mesure\_de\_l\_humidite/humidity-calculator-feuchterechner-mr</a>
- https://www.processsensing.com/en-us/humidity-calculator/rotronic/
- https://www.vaisala.com/en/lp/humidity-calculator?utm\_medium=cpc&utm\_source=google&utm\_campaign=VIM-APAC-EN-DISTR-HUM-India&gclid=CjwKCAjw0ZiiBhBKEiwA4PT9zwv1Z5VJfwijRsa2\_Q--\_\_lo3TIHQpi1y-eGjv\_Zvl8akNbHkgdfhoCLrgQAvD\_BwE