

## LECTURE 13: IMPACT OF RAW MATERIALS AND PROCESSING ON FLAVOR OF DRIED AND OTHER FOOD PRODUCTS

#### ASST.PROF. SUCHED SAMUHASANEETOO, PH.D.

DEPARTMENT OF FOOD TECHNOLOGY, FACULTY OF ENGINEERING AND INDUSTRIAL TECHNOLOGY, SILPAKORN UNIVERSITY



Pictures and contents in the presentation are taken from the public domain via the Internet. The presentations are used for non-profit educational purposes.



# Outline

#### **1. Introduction**

- **1.1 Definition of Flavor**
- **1.2** The Chemical Senses

2. Factor s effect on flavor of dried and other food products

#### 3. Flavor compounds in Fruit and Vegetable Flavor

4. Flavor Analysis
4.1 Objective : Instrumental analysis
4.2 Subjective : Sensory Evaluation
5. Case Study
How to use flavor to determine quality and acceptability of products?



**1. INTRODUCTION** WHAT IS FLAVOR? Definition has changed recently Past - aroma, taste and chemesthetic (used to be called "trigeminal" responses

Now – complex interaction of taste, smell, appearance, mouth feel, exposure, etc.

# **INTEREST**?

 Health and well being - people eat what they like - not what is good for them.

• Low fat, low calorie, calcium fortified, etc.



# **INTEREST**?

## Illness - cancer

• changes in perception

• starve to death





# **INTEREST**?

Commercial value

- People buy foods that taste good.
- Number one complaint from customers is flavor (off-flavors)



# ISSUES

- Desirable flavor What physical/chemical stimuli are responsible for desirable flavor?
  - Flavor uniformity across processing locations
  - Enhancing the flavor of a food
  - How to deliver flavor
- Flavor problems What stimuli are responsible for off flavors?
  - Extending shelf-life
  - Stopping undesirable flavor

# Flavor of Foods

 Desirable flavor orange juice potato chip roast beef

2) Undesirable flavor (off-flavor) oxidized stale rancid warmed-over

### **Classification of Food Flavor**





# **The Chemical Senses**

•Taste and smell only separated when animals moved to land. Since in sea, all chemicals are dissolved in the same medium (water) there is no need for two separate senses. Fish and other sea creatures have one general chemical sense.



# What is a chemical sense?

Both smell and taste constitute a chemical sense

Molecules from the environment enter the nose/mouth and stimulate the receptors
Smell and taste interact
Can't taste many foods with the loss of the ability to smell (anosmia)

•Taste and smell are chemical senses. They give us information about the chemical composition of our surroundings.

•Taste is an immediate sense – a final checkpoint for the acceptability of food before it enters the body.

•Smell is a more distant sense allowing us to detect small concentrations of airborne substances.

# The Gatekeeper

 Function to identify things that the body needs for survival

- Detect things that would be bad for the body and that should be rejected
- Emotional component
  - Things taste/smell good and bad
  - Triggers memories

## The Nervous System

- 1. Communication is vital to the survival of living organisms.
- 2. To interact with their environment, multicellular organisms have developed a communication system at the Cellular Level.
- 3. Specialized Cells (Neurons) allow Messages to be carried from one cell to another so that communication among all body parts is smooth and efficient.
- 4. In HUMANS, these Cells called <u>NEURONS</u> make up the Nervous System.

## The Nervous System has **FOUR FUNCTIONS**

that enable the body to respond quickly. The Nervous System:

- A. <u>Gathers information</u> both from the outside world and from inside the body. **SENSORY FUNCTION**
- B. **Transmits the information** to the processing area of the brain and spinal cord.
- C. <u>Processes the information</u> to determine the best response. INTEGRATIVE FUNCTION
- D. Sends information to muscles, glands, and organs (effectors) so they can respond correctly. Muscular contraction or glandular secretions. MOTOR FUNCTION

#### **THE NEURON**

1. The CELLS that Carry Messages Throughout the Nervous System are called **NEURONS**.

The Neuron is the Basic Functional Unit of the Nervous System.
 Whatever their specific function, all neurons have the same physical parts: The Cell Body, Dendrites and One Axon.
 Messages take the form of ELECTRICAL SIGNALS, and

are known as **IMPULSES**. A Neuron carries impulses in only ONE direction.





## II. Smell

Why do we need smell?

Smell is our distant chemical sense. We can discern information about the chemical composition of substances before coming into more direct contact with them.

For many animals, smell is the most important sense. Although for humans smell is not as important as say vision or hearing, we do use smell more than we think to guide behavior. Smell is an important part of taste. Many qualities of foods that we think we taste, are actually a function of smell.



# AROMA

Exceedingly complex

a given food aroma may consist of several 100 volatiles

Exceedingly sensitive - nose 10<sup>-17</sup> g of some odorants

## **Anatomy of Smell**

The **Olfactory Mucosa** is a dime-sized region located high inside the nasal cavity and is the site of olfactory transduction.



# Olfactory receptor neurons have **cilia** (little hair-like projections) which contain the **olfactory receptor proteins**



# The Nasal Cavity



### The Smell Pathway

Olfactory transduction occurs when odorant molecules reach the olfactory mucosa and bind to the olfactory receptor proteins on the cilia of the olfactory receptor neurons.

When odorants bind to the receptor site, the receptor protein changes shape which in turn triggers the flow of ions across the receptor-cell membrane and an electrical response is triggered in the cilium.

Electrical responses in the cilia spread to the rest of the receptor cell, and from there are passed onto the **olfactory bulb** of the brain in the olfactory nerve. There are about 1,000 different types of receptor proteins each sensitive to different odorants.

We have a total of about 10 million receptor neurons. Each receptor neuron has about 1,000 similar receptor proteins. Because there are 1,000 different receptor proteins, there are also 1,000 different receptor neurons.

Inputs from similar receptor neurons go to similar **glomeruli** (collections of cells within the olfactory bulb). Because there are 1,000 different types of receptor neurons, there are 1,000 different types of glomeruli.

From the olfactory bulb, mitral cells and tufted cells carry olfactory information to the olfactory cortex, and to the orbitofrontal cortex.

# Small region - area of a postage stamp. 50,000,000 receptors!



Olfactory Region (Regio olfactoria)

http://www.leffingwell.com/olfaction.htm



## http://www.leffingwell.com/olfaction.htm



#### The Neural Code for Smell

because odorants are such complicated stimuli, we don't yet have a complete picture of how smell is encoded by the brain

different areas of the mucosa are sensitive to different types of odorants

smells appear to be organized spatially in the olfactory bulb (similar smells are grouped together)

an **odotope** is a group of odorants that share some chemical feature and cause similar patters of neural firing. Neurons that fire to the same odotope are usually located near each other.

### Experience of Smell

Humans can tell the difference between 10,000 different odors. But often it is difficult to name the odors. People who are trained to recognize odors (wine experts or perfume experts) are not necessarily any more sensitive with their nose - just better at retrieving names of smells from memory.

Dogs can be 10,000 times more sensitive to odors than humans. Yet, a individual human olfactory receptor is no less sensitive than a dog's. What makes dogs so sensitive? Although their receptors aren't any better, they have many more of them (1 billion receptors in dogs compared to only 10 million in humans).

Pleasant smells (like fresh-baked bread or coffee) are used in supermarkets to encourage customers.

Two pathways – Odorant binding activates G protein, stimulates Adenylate Cyclase or Phospholipase C, AC generates cAMP – phosphorylates ion channel allowing cations in; or PLC activates PIP which opens an alternative channel.



Pernollet, J.-C.,L. Briand, *Structural recognition between odorants, olfactory-binding proteins and olfactory receptors-first events in odour coding*, in *Flavor Perception*, A.J. Taylor, D.D. Roberts, Eds. 2004, Blackwell Publ.: Ames. p. 86
## **ODORANT CODING**

■ > 1,000 different receptors

 Each odorant will trigger several different receptors to varying levels (recognizes different parts of the odorant molecule)

 Get a pattern of receptor responses - position and strength of firing

## **ODOR CHARACTER**





## PATTERN RECOGNITION



# CHANGE IN ODOR CHARACTER WITH CONCENTRATION



## GENETICS AND PERCEPTION? OR LIKING?

Seems a distance away yet but ... its it?

Virtual nose

# VIRTUAL NOSE

- Characterize all of the olfactory receptors
- Structurally characterize all odorants
- Molecular modeling to be able to predict interactions and strength of interactions of each odorant with each receptor (gives pattern)
- Correlations between odorant patterns and human perception – character and strength
   Link to genetic composition (to correct for inter human differences)

#### Taste

Why do we need taste?

Taste is a gate-keeper sensory mechanism designed to test food and other substances before they enter the body.

Things that are potentially useful for the body tend to taste good, and things that are potentially harmful taste bad.

#### **Anatomy of Taste**

The tongue contains many ridges and valleys called **papillae**. There are four types of papillae:

- Filiform papillae: cone shaped & found all over the tongue (which is why tongues look rough)
- 2. Fungiform papillae: mushroom shaped & found at the tip and sides of the tongue
- 3. Foliate papillae: a series of folds along the sides of the tongue
- 4. Circumvallate papillae: shaped like flat mounds surrounded by a trench & found at the back of the tongue



## Papillae, Neural Pathways, and Taste Bud



All papillae except filiform contain taste buds (so the very center of your tongue which only has filiform papillae is "taste-blind") Each taste bud contains a number of taste cells which have tips that protrude into the taste pore.



#### **The Taste Pathway**

Transduction occurs when different taste substances cause a change in the flow of ions across the membrane of a taste cell.

Different substances affect the membrane in different ways.

Bitter and sweet substances bind into receptor sites which release other substances into the cell.

Sour substances contain H+ ions that block channels in the membrane. Salty substances break up into Na+ ions which flow through the membrane directly into the cell.



Tastant binding activates the G protein to stimulate adenylate cyclase to syn. Cyc AMP. cAMP activates protein kinase to phosphorylate the K+ channel closes it causing a potential – nerve impulse







#### **The Neural Code for Taste**

What tastes do we taste? The four basic tastes are sour, sweet, salty, and bitter. All of our taste sensations can be described as a combination of these four basic tastes. Different taste receptors (and therefore different parts of the tongue) are most sensitive to different tastes.



# **Genetic Differences**











D-GLUCOSE

Т

CHLOROFORM

#### **AH/B** theory





## 2. การรับรสขม







#### THEOBROMINE









Naringin

#### - Bitter peptide



(phe-tyr-pro-glu-leu-phe)

#### - Protein bitterness



| ······································ | $\Delta$ g Value |
|----------------------------------------|------------------|
| Amino acids                            | (cal/mol)        |
| Glycine                                | 0                |
| Serine                                 | 40               |
| Threonine                              | 440              |
| Histidine                              | 500              |
| Aspartic acid                          | 540              |
| Glutamic acid                          | 550              |
| Arginine                               | 730              |
| Alanine                                | 730              |
| Methionine                             | 1300             |
| Lysine                                 | 1500             |
| Valine                                 | 1690             |
| Leucine                                | 2420             |
| Proline                                | 2620             |
| Phenylalanine                          | 2650             |
| Tyrosine                               | 2870             |
| Isoleucine                             | 2970             |
| Tryptophan                             | 3000             |

Calculated  $\Delta g$  Values for Individual Amino Acids

Source: From Ney (68).

#### 3. Salty and Sour

Salty

- Classic salty taste Sodium chloride
- Complex taste overall perception of sweetness, bitter, sour, salty
- Potassium and other cation salty and bitter taste

Sour

**Concentration of hydrogen ion** 

$$H_{3}C - (CH_{2}) - C_{10} O_{10}$$

$$H_{3}C - (CH_{2}) - C_{10} O_{10} O_{10}$$

$$Na$$
SODIUM LAURATE



#### **B.** Flavor Enhancers

ให้รสอร่อย หรือ umami taste เมื่อใช้ > threshold และจะเพิ่มรสชาติเมื่อใช้ < threshold</li>
ผลที่เด่นชัด และทำให้เกิดความพึงพอใจ ในกลิ่นรส ของ ผัก ผลิตภัณฑ์นม เนื้อสัตว์





(5-IMP)

- โดยมากมาจากจุลินทรีย์

- synergistic interaction of MSG and 5'- ribonucleotide
- maltol or ethyl maltol are using in confectionery, beverages



- burnt caramel aroma
- Sweet taste at low conceentration

#### C. Astringency



Tannin

### **D.** Pungency



vanillylamides of monocarboxylic acids



### PIPERINE

- black and white pepper
## phenylakyl ketones



## E. Cooling

- react at receptor

 cooling effect related with mint like flavour (spearmint peppermint wintergreen)





#### d-CAMPHOR

# **Flavour Perception**







## **Flavour Perception**

## Psychological view of perception applied to flavour

| Distal Stimulus                   |                                | Proximal<br>stimulus        |                                                                            |  | Perception                                                          |
|-----------------------------------|--------------------------------|-----------------------------|----------------------------------------------------------------------------|--|---------------------------------------------------------------------|
| Flavour<br>composition in<br>food | Sta<br>heads<br>Orthor<br>sign | tic<br>pace<br>nasal<br>nal | Aroma and taste<br>profile at<br>receptors<br>Ortho, retro<br>nasal signal |  | Combination of<br>taste, aroma<br>and mouthfeel<br>signals in brain |
| Measured by<br>extraction & GC-MS |                                | Measured<br>API-M           |                                                                            |  | Sensory<br>measurements                                             |

## **Chromatography-Mass Spectrometry (GC-MS)**



## **Gas Chromatography-Olfactometry (GC-O)**



## Psychological view of perception applied to flavour



## Atmospheric Pressure Ionisation (API)-MS

## Psychological view of perception applied to flavour



## **Evidence of a sugar – aroma interaction**



## Stick Gum: Aroma, Sensory and Sugar



#### Examples of differences in distal and proximal aroma stimuli



#### Relating proximal aroma stimuli to flavour perception



#### Taste



2. Factor s effect on flavor of dried and other food products

Fruits and vegetables are important sources of vitamins, minerals, dietary fiber, and antioxidants.

The relative contribution of each commodity to human health and wellness depends upon its nutritive value and percapita consumption.





Quality change is greatly influenced consumer preferences and degree of satisfaction from eating the fruit or vegetable.

### Factor s effect on flavor of dried and other food products



#### 1. Genetic

Thus, it is essential that good flavor quality be emphasized in the future by selecting the best-tasting genotypes to produce.

#### 2. Preharvest, harvesting

Using an integrated crop management system and harvesting at the maturity or ripeness stage that will optimize eating quality at the time of consumption.

#### 3. Postharvest factors.

The longer the time between harvest and eating, the greater the losses of characteristic flavor (taste and aroma) and the development of off-flavors in most fruits and vegetables.

Postharvest life based on flavor and nutritional quality is shorter than that based on appearance and textural quality and by using the postharvest handling procedures that will maintain optimal flavor and nutritional quality of fruits and vegetables between harvest and consumption.



Front. Plant Sci., 20 November 2018 Sec. Plant Physiology Volume 9 - 2018

### Effect of Drying Process effect the quality change of product

1. Raw material preparation : Washing, Trimming, Slice, Soaking enzyme reaction effect on flavor of products

2. Drying process.

Oxidation (lipid, carotenoids) and Mallard reaction (non enzymatic reaction)



### 3. Flavor compounds in Fruit and Vegetable Flavor



Natural carbon pools for the production of flavor compounds, and the pathway

The Plant Journal, (2008), 54, 712–732

### **Flavor from Vegetable, Fruit, and Spice Flavors**





Formation of the principle flavor compound in fresh garlic

## **B.** Sulfur-Containing Volatiles in the Cruciferae.

Cabbage, brussels sprouts, turnips, mustard, watercress and Horseradishes.



**Reactions involved in the formation of Cruciferae flavors** 

### C. Unique Sulfur Compound in Shiitake Mushrooms



**Formation of lenthionine in Shiitake mushrooms** 

### **D.** Methoxy Alkyl Pyrazine Volatiles in Vegetables.

Green-earthy aroma lu Bell pepper Potato Green pea



**Proposed enzymic scheme for the formation of methoxy alkyl pyrazines** 

### **E.** Enzymically Derived Volatiles from Fatty Acids.

1. Lipoxygenase-Derived Flavors in Plants.





**Conversion of aldehyde to alcohol resulting in subtle flavor modifications in cucumbers and melons**
2. Volatiles from Beta-Oxidation of Long-Chain Fatty Acids

(Ripe pear fruit-like)

#### **F.** Volatiles from Branched-Chain Amino Acids



#### **G.** Volatiles Terpenoids in Flavors









#### H. Flavors Derived from the Shikimic Acid Pathway



#### **Flavors Volatiles from Fats and Oils**



#### **Development of "Process" or "Reaction" Flavor Volatiles**

**A. Thermally Induced Process Flavors** 







$$\frac{NH_2}{H-S-CH_2-CH_2-COOH} \xrightarrow{\Delta} H_2S + H_3C-C-H + NH_3 + CO_2$$
  
CYSTEINE

$$\begin{array}{ccc}
O & OH & O & SH \\
\parallel & & & \\
H_3C-C - CH - CH_3 + H_2S - - - H_3C - C - CH - CH_3 \\
ACETOIN
\end{array}$$

$$NH_3 + H_3C - C - H + H_3C - C - C - C + H_3 - H_3C - C + H_3C - H_3C$$

2,4,5-TRIMETHYL-

**3-THIAZOLINE** 







#### **B.** Volatiles Derived from Oxidative Clevage of Carotenoids



#### 4. Flavor Analysis

- 4.1 Objective : Instrumental analysis
- 4.2 Subjective : Sensory Evaluation

### **Flavor Analysis**

Objective analysis: Instrumental analysis
 1.1 Isolation and Separation of Flavor Compounds
 1.2 Flavor Identification by Spectrometric Methods

2. Subjective analysis :Sensory Evaluation

### ISOLATION AND SEPARATION OF FLAVOR COMPOUNDS

#### I. Objectives

Isolation of volatile flavor compounds of the original good flavor with minimum artifact.

- 1. Selection of good flavor sample
- 2. Isolation of volatile flavor compounds
- 3. Extraction and concentration
- 4. Fractionation
- 5. Preparation of pure compound
- 6. Identification of flavor compounds
- 7. Synthesis of compounds
- 8. Reconstitution of the flavor

### **II. Prerequisites**

- 1. Selection of sample
- 2. No alternation of the original flavor
- 3. No artifacts
  - due to : decomposition
    - autooxidation

#### **Continuous Solvent Extraction**



### Steam distillation and continuous solvent extraction



### Instrumental Analysis of Volatile Compounds

Static headspace analysis

• Dynamic headspace analysis

Solid phase microextraction

## III. Apparatus for Isolation

*Headspace analysis* Without enrichment



## VI. Dynamic Headspace Analyzer



Diagram of dynamic headspace sampler and gas chromatographer

# Solid-phase Microextraction Analyses of Flavor Compounds in Foods

## Objectives of Solid Phase Microextraction

#### **Conventional Sample Preparation**

- Time and Labor Intensive
- Multiple Steps
- Loss of Sample
- Errors in each steps
  - Contamination

 $\overline{\phantom{a}}$ 

To produce sample with highest compound concentration, <u>lowest level contamination and shortest sample preparation time</u>

## **Solid Phase Microextraction**

Solid Phase Microextraction has been commercially available for 15 years and developed for flavor and food analyses rapidly

A technique that uses a short, thin, solid rod of fused silica, coated with absorbent polymer for extraction of volatile compounds

## Theory of Solid Phase Microextraction

It is essential to understand the theory to develop and optimize SPME method for maximizing sensitivity and minimizing isolation and desorption times

- Compound partition between fiber and sample for absorption of compound to the fiber
- Like "dissolves" like
- The isolated and concentrated compound desorbs from the fiber into an analytical instrument

### Detection Limits and Precision of Organic Volatiles<sup>a</sup> in Water

| FechniqueDetection Limitwith FID (ppb) |             | Precision (% rsd) |  |  |
|----------------------------------------|-------------|-------------------|--|--|
| SPME                                   | 0.05-0.3    | 1-3               |  |  |
| Static Headspace                       | 1-2         | 1-3               |  |  |
| Dynamic Headspace                      | 0.003-0.005 | 1-8               |  |  |
| Direct Injection                       | 17-240      | 2-13              |  |  |

a; Methyl chloride, chloroform, dioxane, TCE, benzene, toluene, xylene, and 1,2,4-trimethylbenzene

### **SPME** Fiber with Holder



# **Diagram of SPME Extraction**



# SPME Analysis of Volatile Compounds



# **Principles of Headspace SPME**

 $n_{f=\frac{K_{fh}V_{f}V_{s}C_{o}}{K_{fh}V_{f}+K_{hs}V_{h}+V_{s}}$ 

**N**f: The # of moles in fiber coating

$$\label{eq:K:Partition coefficient} \begin{split} & \mathsf{K}: \mbox{ Partition coefficient} \\ & \mathsf{K}_{fh} = \frac{\mbox{Concentration of coating}}{\mbox{Concentration of headspace}} \\ & \mathsf{V}_f, \mathsf{V}_s, \mathsf{V}_h: \mbox{ Volume of fiber coating,} \\ & \mbox{ solution, and headspace, respectively} \\ & \mathbf{C}_o: \mbox{ Initial concentration of analyte} \end{split}$$

in the solution

### Effects of Different Fibers on the Volatile Compound Extraction of Soybean Oil

- CB/PDMS:Carboxen/Polydimethylsiloxane
- PDMS: Polydimethylsiloxane
- CW/DVB: Carbowax/Divinylbenzene
- PA: Polyacrylate.

## Effects of Different Fibers on the Hexanal Analysis in Oil



## Effects of Different Fibers on the Hexanal Analysis

|      | He  | exanal | Peak i | n Elect | ronic | Count |  |
|------|-----|--------|--------|---------|-------|-------|--|
|      |     |        |        |         |       |       |  |
|      |     | N      | lean   |         | CV    | (%)   |  |
| CB/P | DMS | 4      | 499    |         | 4.    | 2     |  |
| PA   |     | ,      | 739    |         | 7.    | 2     |  |
| PDM  | [S  | (      | 966    |         | 3.    | 2     |  |
| CW/J | DVB | 1,     | 520    |         | 10.   | 7     |  |

CV: Coefficient Variation (%) for n = 5

Significant difference (P<0.05)
## Improving Sensitivity of Solid Phase Microextraction

- Fiber Thickness
- Extraction Temperature and Time
- Sample Agitation and Concentration
- Direct sampling versus Headspace Sampling
- Selection of Proper Fiber
- Saturation of Sample with Proper Salts
- Maximum Ratio of Sample to Headspace Volume
- Large Sampling Vial

### 2. Final fractionation

Sample: as concentrate as possible

GC-Mass: Use capillary column Identification of the important peaks by mass spectrometry

## Introduction

 Gas chromatography is an instrumental method for the separation and identification of chemical compounds.

### **Flow of Mobile Phase**





## In gas chromatography

the mobile phase is an inert carrier gas and

the stationary phase is a solid or a liquid coated on a solid contained in a coiled column.

# IDENTIFICATION of FLAVOR COMPOUND by SPECTROMETRIC METHODS



# Mass Spectrometry

 Uses the interaction of electric and/or magnetic fields (i.e. electromagnetic radiation) with matter to determine weight or mass

Measures mass, <u>not</u> absorption or emission of electromagnetic radiation

# **Mass Spec Principles**



# **Typical Mass Spectrum**



# Electron Impact MS of CH<sub>3</sub>OH



ET Breaks up Molecules in Predictable Ways

# Electron Impact MS of CH<sub>3</sub>Br



Isotopes can help in identifying compounds

# GC-MS

### Mass Spectrometry

#### Gas Chromatography





## **Gas Chromatography - Olfactometry**

### **GC - 0**









Serial Dilution Gas Chromatography Si



 $\sum_{\substack{n=1\\ n \neq 0}}^{1} \frac{1}{27} \qquad \sum_{\substack{n=1\\ n \neq 1}}^{1} \frac{1}{27}$ 



retention index

Data Analysis

Graphics





#### solvent assisted flavor evaporation = SAFE







## **SAFE – UIUC derivative**



concentrated to 200 µl under a gentle stream of nitrogen gas





Gas Chromatography-Olfactometry Gas Chromatography-Mass Spectrometry (GCO) (GC-MS)



Figure 2. Scheme of the calculation of isothermal retention indices

$$LRI_{\chi} = \left[ \left( \frac{t_{\chi} - t_n}{t_{n+1} - t_n} \right) + n \right] \times 100$$

LRIx = Linear Retention Index ของ component X

- t<sub>x</sub> = Retention time ଏହଏ component X (min)
- t<sub>n</sub> = Retention time of standard alkane, eluting before component X

(min) ແລະ possessing n carbon atoms

 $t_{n+1}$  = Retention time of standard alkane, eluting after component x (min) and possessing n+1 carbon atoms **Table 2.** Retention index values of limonene and their frequency of citation inFlavour and Fragrance Journal published throughout the year 2006

|          | Po               | Polar stationary phase |                  | Non-polar stationary phase |  |
|----------|------------------|------------------------|------------------|----------------------------|--|
|          | LRI <sup>a</sup> | Frequency of citation  | LRI <sup>b</sup> | Frequency of citation      |  |
| Limonene | 1183             | 3                      | 1010             | 1                          |  |
|          | 1190             | 2                      | 1013             | 1                          |  |
|          | 1195             | 1                      | 1022             | 5                          |  |
|          | 1199             | 2                      | 1023             | 1                          |  |
|          | 1201             | 1                      | 1025             | 3                          |  |
|          | 1202             | 3                      | 1026             | 2                          |  |
|          | 1203             | 10                     | 1029             | 3                          |  |
|          | 1204             | 4                      | 1030             | 10                         |  |
|          | 1205             | 5                      | 1031             | 17                         |  |
|          |                  |                        | 1032             | 8                          |  |
|          |                  |                        | 1033             | 1                          |  |
|          |                  |                        | 1035             | 1                          |  |
|          |                  |                        | 1038             | 2                          |  |

| Table 1         Outline of aroma analysis |                                                                                                                                                                                                                                             |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Step                                      | Procedure                                                                                                                                                                                                                                   |  |  |
| I                                         | Separation of the extract containing the volatile fraction<br>of a food by high-resolution gas chromatography and<br>localization of potent odorants by charm analysis or<br>aroma extract dilution analysis (AEDA)                         |  |  |
| II                                        | Detection of highly volatile potent odorants by gas<br>chromatography–olfactometry of static headspace<br>samples (GCOH)                                                                                                                    |  |  |
|                                           | Enrichment and identification of potent odorants                                                                                                                                                                                            |  |  |
| IV                                        | Quantification of potent odorants and calculation of their odour activity values (OAVs)                                                                                                                                                     |  |  |
| V                                         | Preparation of a synthetic blend of the potent odorants<br>on the basis of the quantitative data obtained in step IV.<br>Critical comparison of the aroma profile of the synthetic<br>blend, denoted aroma model, with that of the original |  |  |
| VI                                        | Comparison of the overall odour of the aroma model<br>with that of models in which one or more components<br>are omitted (omission experiments)                                                                                             |  |  |



Figure 1 FD chromatogram of the volatile fraction isolated from boiled beef (Kerscher and Grosch, 1997). Ordinate: *n*, exponent of FD factor  $2^n$ . Abscissa: retention index (RI) on the capillary OV-1701. The odorants were identified as: (1) 2,3-butanedione; (2) 2-methyl-3-furanthiol; (3) 2-furfuryl-thiol; (4) butyric acid; (5) 3-mercapto-2-pentanone; (6) 2-acetyl-1-pyrroline; (7) methional; (8) 1-octen-3-one; (9) octanal; (10) nonanal; (11) guaiacol; (12) 4-hydroxy-2,5-dimethyl-3(2H)-furanone; (13) (*Z*)-2-nonenal; (14) (*E*,*Z*)-2,6-nonadienal; (15) (*E*)-2-nonenal; (16) *p*-cresol; (17) 3-hydroxy-4,5-dimethyl-2(5H)-furanone; (18) (*E*,*E*)-2,4-decadienal; (19) 12-methyltridecanal.

### Table 2 GCOH of boiled beef<sup>a</sup>

| No. | Odorant                | Volume <sup>b</sup><br>(ml) | FD factor <sup>c</sup> |
|-----|------------------------|-----------------------------|------------------------|
| 1   | Methanethiol           | 0.5                         | 40                     |
| 2   | Dimethyl sulphide      | 1.0                         | 20                     |
| 3   | Dimethyl trisulphide   | 2.5                         | 8                      |
| 4   | Octanal                | 2.5                         | 8                      |
| 5   | Nonanal                | 2.5                         | 8                      |
| 6   | Acetaldehyde           | 5.0                         | 4                      |
| 7   | Methylpropanal         | 5.0                         | 4                      |
| 8   | Hexanal                | 5.0                         | 4                      |
| 9   | 2-Methyl-3-furanthiol  | 5.0                         | 4                      |
| 10  | Methional              | 5.0                         | 4                      |
| 11  | 2-Furfurylthiol        | 5.0                         | 4                      |
| 12  | 3-Methylbutanal        | 10.0                        | 2                      |
| 13  | 1-Octen-3-one          | 10.0                        | 2                      |
| 14  | Dimethyl tetrasulphide | 10.0                        | 2                      |
| 15  | 2-Methylbutanal        | 20.0                        | 1                      |
| 16  | (E)-2-nonenal          | 20.0                        | 1                      |

| Odorant                         | Gewürztraminer |                   | Scheurebe    | Scheurebe        |  |
|---------------------------------|----------------|-------------------|--------------|------------------|--|
|                                 | Conc. (µg/l)   | OAV <sup>b</sup>  | Conc. (µg/l) | OAV <sup>b</sup> |  |
| Ethyl octanoate                 | 630            | 315               | 270          | 135              |  |
| Ethyl hexanoate                 | 490            | 98                | 280          | 56               |  |
| 3-Methylbutyl acetate           | 2900           | 97                | 1450         | 48               |  |
| Ethyl isobutyrate               | 150            | 10                | 480          | 32               |  |
| (E)-β-damascenone               | 0.84           | 17                | 0.98         | 20               |  |
| Linalool                        | 175            | 12                | 307          | 20               |  |
| Wine lactone                    | 0.10           | 10                | 0.10         | 10               |  |
| Ethyl butyrate                  | 210            | 11                | 184          | 9                |  |
| <i>cis</i> -Rose oxide          | 21             | 105               | 3.0          | 15               |  |
| 4-Mercapto-4-methylpentan-2-one | < 0.01         | n.d. <sup>c</sup> | 0.40         | 667              |  |

Table 5 Odorants showing OAVs ≥10 in Gewürztraminer and/or Scheurebe wines<sup>a</sup>

<sup>a</sup>Source: Guth (Guth, 1997a, 1998).

<sup>b</sup>The odour activity values (OAVs) were calculated as the ratio of concentration to odour threshold values of the compound in water/ethanol (9 + 1, w/w).

<sup>c</sup>Not determined.

### **Subjective analysis :Sensory Evaluation**

#### B. Descriptive

- 1. **Single sample** (monodic) present one sample at a time
- 2. Ranking -
- 3. Quality rating (scalar scoring) -
- 4. **Magnitude estimation** based on assignment of a number for the first sample tested, after which all subsequent numbers for the subsequent samples are assigned in proportion.
- 5. **Texture profile** the analysis of a product's perceived manifestation of the structure or inner make-up of foods in terms of: fell (tactile) and resistance to applied forces (kinesthetic).
- 6. **Quantitative descriptive analysis** relies heavily on statistical analysis to determine the appropriate terms, procedures, and panelists to be used for analysis of a specific product.
  - Training requires the use of product and ingredient references to stimulate the generation of terminology.
  - Evaluated on computer. Reported in "spider web" with a branch or spoke for each attribute
- 7. **Flavor profile** the analysis of a product's perceived aroma and flavor characteristics, their intensities, order of appearance, and aftertaste.
  - An amplitude rating is generally included as part of the profile

The flavor profile method (Arthur D. Little, Inc., 1940's)

- 1. Components
  - a. Character notes
    - (1) Cooked beef lean
    - (2) Cooked beef fat
    - (3) Browned
    - (4) Serum/bloody
    - (5) Grainy/cowy
    - (6) Cardboard
    - (7) Painty
    - (8) Fishy

### b. Intensity - category scale, 15 point

- 2= soda in saltines
- 5= apple in Mott's apple sauce
- 7 = orange in Minute Maid frozen
- 10= grape in Welch's grape juice
- 12 = cinnamon in Big Red gum
- c. Order of appearance
- d. Aftertaste

## What is Descriptive Flavor Analysis?



- A tool used to describe a Flavor Profile
- Allows us to quantify & graphically represent the Flavor Profile
- Allows Flavorists & the Customers to use the same language
- Helps the Customers see the impact of our products on their products
- Allows the Customer to participate in the creative process

012345678910 Estery (Fruity) 012345678910 Green 012345678910 Spicy 012345678910 Brown 012345678910 Acidic 012345678910 Sweet (Sugar)

Fig. 1---Impact vs Stimulus (left)

Fig. 2---Spider-Web Profile of Impact vs Știmulus (below)



Typical Descriptive Flavor Analysis Starting Material vs. Standard, Orange Juice



Table 1.Differences in the flavor attributes, intensity of flavor attributes and order of appearance for 2 bean and cheese burritos using a 15-point scale with 0.5 point increments.

#### Company's Current Product

#### <u>Market Leader</u>

Flavor Attributes

#### **Flavor Attributes**

| Amplitude            | 8.0  |
|----------------------|------|
| Oil-Heated           | 7.0  |
| Overall Spice        | 4.0  |
| Cumin                | 3.0  |
| Meat Identity        | 5.0  |
| Bean (Pinto)         | 10.0 |
| Wheat                | 4.0  |
| Doughy               | 4.5  |
| Onion-Fresh          | 4.0  |
| Red Pepper           | 2.5  |
| Processed Cheese     | 2.5  |
| Chili Pepper (Green) | 2.5  |
| Oily Mouthfeel       | 3.0  |
| Heat Burn            | 2.0  |
| Salty                | 7.0  |
| Sour                 | 2.5  |
| Bitter               | 3.0  |

| Amplitude            | 11.0 |
|----------------------|------|
| Overall Spice        | 5.0  |
| Oregano              | 3.0  |
| Tarragon             | 2.0  |
| Turmeric             | 2.0  |
| Black Pepper         | 2.5  |
| Chicken Identity     | 5.0  |
| Beans (Pinto)        | 4.0  |
| Onion-Dried          | 3.0  |
| Wheat                | 5.0  |
| Toasted              | 4.0  |
| Processed Cheese     | 2.5  |
| Chili Pepper (Green) | 2.0  |
| Heat Burn            | 5.5  |
| Salty                | 8.0  |
| Sour                 | 2.5  |
| Bitter               | 2.5  |


### **BASELINE RESISTANCE**

All of the polymer films on a set of electrodes (sensors) start out at a measured resistance, their *baseline resistance*. If there has been no change in the composition of the air, the films stay at the baseline resistance and the percent change is zero

### THE ELECTRONIC NOSE SMELLS SOMETHING

Each polymer changes its size, and therefore its resistance, by a different amount, making a pattern of the change



If a different compound had caused the air to change, the pattern of the polymer films' change would have been different:



### 5. Case Study

How to use flavor to determine quality and acceptability of products?

# **Tom Yum flavor**







### 2. Volatile compound analysis using GC-O And Detection frequency



Gas Chromatography Olfactometry-Flame Ionization Detector (GCO-FID)



## Volatile compound of Tum Yum Flavor

| Peak | Compound                  | LRI <sup>a</sup> | NIF <sup>b</sup> | SNIF <sup>c</sup> | Descriptive                          |
|------|---------------------------|------------------|------------------|-------------------|--------------------------------------|
| 1    | ethanol                   | 537              | 9.1              | 0.22              | sweet                                |
| 2    | methylbutenol             | 615              | 9.1              | 0.19              | herb                                 |
| 3    | alpha-pinene              | 932              | 36.4             | 2.64              | fresh camphor earthy woody           |
| 4    | camphene                  | 947              | 54.5             | 4.55              | camphor woody herbal fresh           |
| 5    | beta-pinene               | 993              | 90.9             | 5.43              | herb woody pine green                |
| 6    | 1,8-cineole               | 1034             | 100              | 9.16              | citrus herb minty pepper spicy woody |
| 7    | beta-ocimene              | 1049             | 54.5             | 1.32              | citrus herb flower green woody       |
| 8    | gamma-terpinene           | 1059             | 27.3             | 1.18              | lemon lime herbal                    |
| 9    | linalool                  | 1102             | 81.8             | 6.60              | flower citrus floral lemon orange    |
| 10   | E,Z-alloocimene           | 1128             | 9.1              | 0.55              | grassy                               |
| 11   | citronellal               | 1157             | 100              | 16.69             | lemon fresh green-citrusy            |
| 12   | 4- terpineol              | 1178             | 100              | 4.14              | lemon lime herb green                |
| 13   | cis-carveol               | 1205             | 27.3             | 0.67              | herb spicy green                     |
| 14   | (Z)-citral, (Z)- neral    | 1241             | 100              | 16.05             | citrus lemon green-citrusy           |
| 15   | (E)-citral, (E)- geranial | 1273             | 100              | 19.61             | citrus lemon green-citrusy           |
| 16   | geranyl formate           | 1303             | 9.1              | 0.63              | citrus                               |
| 17   | methyl geranate           | 1321             | 18.2             | 0.67              | flower green                         |
| 18   | delta-elemene             | 1333             | 9.1              | 0.27              | woody                                |

| Peak | Compound                        | LRI <sup>a</sup> | NIF <sup>b</sup> | SNIF <sup>c</sup> | Descriptive                            |
|------|---------------------------------|------------------|------------------|-------------------|----------------------------------------|
| 19   | alpha-cubebene                  | 1341             | 9.1              | 0.29              | herb                                   |
| 20   | (-)-alpha- copaene              | 1369             | 72.7             | 4.62              | spice herbal green-citrusy             |
| 21   | neryl acetate                   | 1383             | 45.5             | 1.63              | fruity lemon lime sweet                |
| 22   | (-)-beta-elemene                | 1388             | 63.6             | 2.16              | herb fresh green green-citrusy         |
| 23   | methyl eugenol                  | 1404             | 27.3             | 0.90              | clove, spice                           |
| 24   | caryophyllene                   | 1413             | 63.6             | 2.17              | green-citrusy spicy herb               |
| 25   | alpha-caryophyllene             | 1443             | 54.5             | 2.53              | fruity woody mint green                |
| 26   | beta-farnesene                  | 1454             | 63.6             | 2.67              | fruity, citrus-like, woody             |
| 27   | germacrene D                    | 1471             | 9.1              | 0.21              | spice                                  |
| 28   | beta-selinene                   | 1475             | 27.3             | 0.33              | herb green-citrusy                     |
| 29   | alpha-selinene                  | 1485             | 54.5             | 1.81              | orange herb flower sweet green-citrusy |
| 30   | beta-bisabolene                 | 1504             | 9.1              | 0.27              | herb                                   |
| 31   | delta-cadinene                  | 1516             | 9.1              | 0.82              | herb                                   |
| 32   | valencene                       | 1523             | 18.2             | 0.61              | orange green                           |
| 33   | trans-nerolidol                 | 1560             | 27.3             | 0.78              | waxy, floral                           |
| 34   | hinesol                         | 1602             | 18.2             | 0.29              | spicy peppery woody                    |
| 35   | (R)-gamma-cadinene              | 1641             | 9.1              | 0.52              | herb                                   |
| 36   | 10s,11s-himachala-3(12),4-diene | 1678             | 9.1              | 0.31              | herb                                   |

## Key volatile compound of Tom Yum Flavor-

| Peak | Compound    | LRI <sup>a</sup> | NIF <sup>b</sup> | SNIF <sup>c</sup> | Odour descriptions                   |
|------|-------------|------------------|------------------|-------------------|--------------------------------------|
| 5    | β-pinene    | 993              | 90.90            | 5.43              | herb woody pine green                |
| 6    | 1,8-cineole | 1034             | 100.00           | 9.16              | citrus herb minty pepper spicy woody |
| 9    | linalool    | 1102             | 81.80            | 6.60              | flower citrus floral lemon orange    |
| 11   | citronellal | 1157             | 100.00           | 16.69             | lemon fresh green-citrusy            |
| 12   | 4-terpineol | 1178             | 100.00           | 4.14              | lemon lime herb green                |
| 14   | neral       | 1241             | 100.00           | 16.05             | citrus lemon green-citrusy           |
| 15   | geranial    | 1273             | 100.00           | 19.61             | citrus lemon green-citrusy           |

<u>Note</u>

<sup>a</sup> Linear Retention Index using HP-5 capillary column

<sup>b</sup> % of panelist who recognized flavor

<sup>c</sup> duration od smell

# **Volatile compound during storage**



# **Sensory evaluation of volatile compounds**







#### Equation and R square of each key volatile compounds

| Compound    | Equation                               | $R^2$  | (mg/g) |
|-------------|----------------------------------------|--------|--------|
| beta-pinene | y=0.0007x <sup>2</sup> -0.0304x+0.6954 | 0.9757 | 2.54   |
| linalool    | y=0.0007x <sup>2</sup> -0.031x+0.6802  | 0.9521 | 2.40   |
| citronellal | y=0.0079x <sup>2</sup> -0.3822x+9.2011 | 0.9501 | 34.36  |
| 4-terpineol | y=0.0002x <sup>2</sup> -0.0107x+0.2528 | 0.9649 | 0.94   |
| neral       | y=0.0195x <sup>2</sup> -0.9757x+23.805 | 0.9933 | 88.54  |
| geranial    | y=0.0149x <sup>2</sup> -0.7407x+18.532 | 0.9848 | 69.68  |

These value calculated from survival analysis that 50% of consumer rejected at 15.72 day



### Shelf life under acceleration condition



### **Shelf life evaluation**

From Rate's Law), determine which order should be zero order (n=0) first order (n=1) or second order (n=2) of **beta-pinene** 







### R square of each compound and differcent temperature

| zero order<br>kinetic model | 25°C   | 37°C                          | 50°C   | first order<br>kinetic model | 25°C   | 37°C   | 50°C                 |
|-----------------------------|--------|-------------------------------|--------|------------------------------|--------|--------|----------------------|
| beta-pinene                 | 0.9202 | 0.9387                        | 0.9195 | beta-pinene                  | 0.9257 | 0.9494 | 0.9364               |
| linalool                    | 0.9245 | 0.9319                        | 0.9383 | linalool                     | 0.9316 | 0.9432 | 0.95 <mark>61</mark> |
| citronellal                 | 0.9820 | 0.9412                        | 0.9137 | citronellal                  | 0.9853 | 0.9495 | 0. <mark>9292</mark> |
| 4-terpineol                 | 0.9696 | 0.9537                        | 0.9248 | 4-terpineol                  | 0.9473 | 0.9914 | <mark>0.948</mark> 6 |
| neral                       | 0.9463 | 0.9901                        | 0.9394 | neral                        | 0.9721 | 0.9585 | 0.9379               |
| geranial                    | 0.9798 | 0.9742                        | 0.9937 | geranial                     | 0.9798 | 0.9747 | 0.9943               |
|                             |        | second order<br>kinetic model | 25°C   | 37°C                         | 50°C   |        |                      |
|                             |        | beta-pinene                   | 0.9310 | 0.9589                       | 0.9514 |        |                      |
|                             |        | linalool                      | 0.9383 | 0.9534                       | 0.9706 |        |                      |
|                             |        | citronellal                   | 0.9883 | 0.9570                       | 0.9434 |        |                      |
|                             |        | 4-terpineol                   | 0.9745 | 0.9629                       | 0.9498 |        |                      |
|                             |        | neral                         | 0.9484 | 0.9925                       | 0.9569 |        |                      |
|                             |        | geranial                      | 0.9798 | 0.9751                       | 0.9943 |        |                      |

K, rection constant of each volatile compound at different temperature

| Kay valatila aammaynd | Reaction rate constant (k) |         |         |  |  |  |
|-----------------------|----------------------------|---------|---------|--|--|--|
| Key volatile compound | 25°C                       | 37°C    | 50°C    |  |  |  |
| beta-pinene           | 0.00060                    | 0.00110 | 0.00160 |  |  |  |
| linalool              | 0.00060                    | 0.00140 | 0.00220 |  |  |  |
| citronellal           | 0.00004                    | 0.00006 | 0.00010 |  |  |  |
| 4-terpineol           | 0.00010                    | 0.00021 | 0.00028 |  |  |  |
| neral                 | 0.000003                   | 0.00001 | 0.00003 |  |  |  |
| geranial              | 0.000005                   | 0.00001 | 0.00003 |  |  |  |

$$1/C_{A} = 1/C_{A0} - kt$$

Where  $C_A$  volatile compound content at the time consumer rejected  $C_{A0}$  volatile compound content at beginning (t = 0)

- k reaction rate constant
- t storage time



#### Shelf life evaluation of Tom Yum flavor

| Kay valatila aamnavnd | S    | D    |      |          |  |  |  |  |
|-----------------------|------|------|------|----------|--|--|--|--|
|                       | 25°C | 37°C | 50°C | K square |  |  |  |  |
| beta-pinene           | 305  | 166  | 114  | 0.9818   |  |  |  |  |
| linalool              | 338  | 144  | 92   | 0.9701   |  |  |  |  |
| citronellal           | 332  | 222  | 133  | 0.9956   |  |  |  |  |
| 4-terpineol           | 492  | 234  | 175  | 0.9391   |  |  |  |  |
| neral                 | 1689 | 507  | 169  | 0.9993   |  |  |  |  |
| geranial              | 1280 | 639  | 213  | 0.9832   |  |  |  |  |





Boiling point : 163 -166°C ที่ 760 mm Hg Vapor pressure : 2.93 mm/Hg ที่ 25.00 °C

Boiling point : 194-197°C ที่ 760 mm Hg Vapor pressure : 0.16 mm/Hg ที่ 25.00 °C

