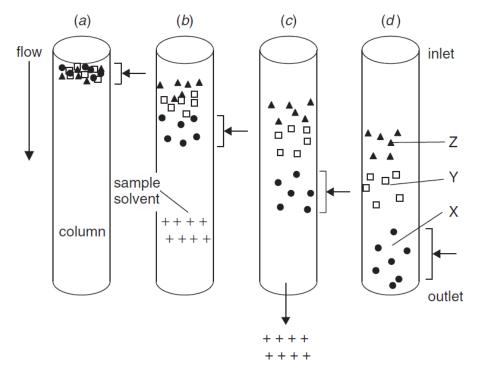


AITC course 2023 : The application of a parabolic greenhouse solar dryer together with raw material preparation techniques to extend shelf-life and enhance quality of agricultural products

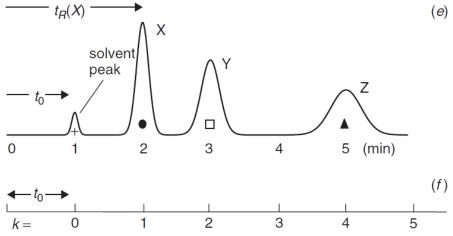
Extraction and analysis of bioactive compounds from fresh and dried food products

Associate Professor Dr. Pramote KHUWIJITJARU

Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University


- High Performance liquid chromatography (HPLC)
- Antioxidant capacity using DPPH assay
- Total phenolic content using Folin-Ciocalteu reagent

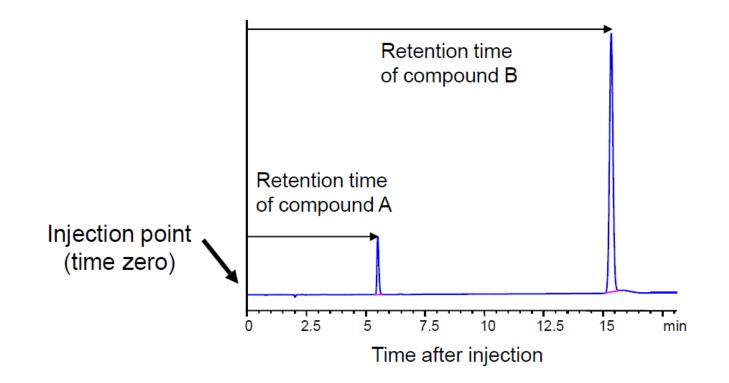
HPLC


- Fundamentals of chromatography
- HPLC instrument
- Total phenolic content using Folin-Ciocalteu reagent

HPLC for bioactive compounds analysis

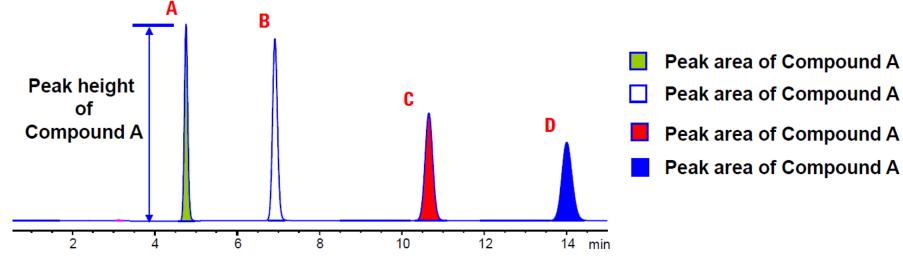
Fundamentals of chromatography for separation of compounds

Snyder, L. R.; Kirkland, J. J.; Dolan, J. W., *Introduction to Modern Liquid Chromatography. John Wiley & Sons: 2010; p 912.*



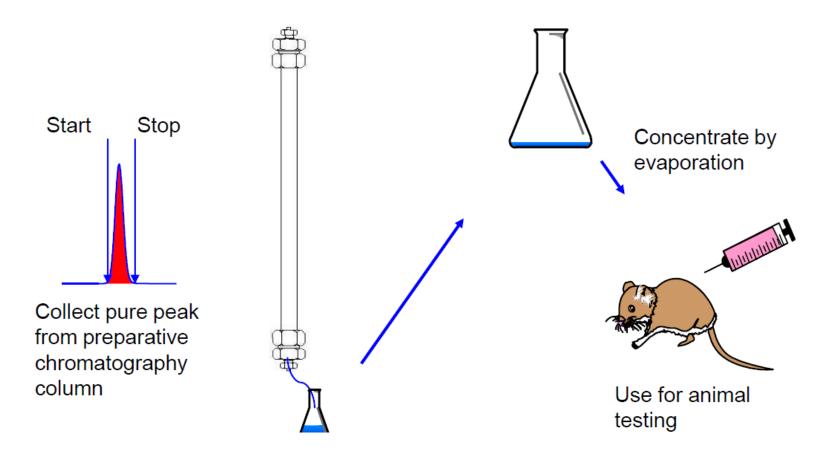
HPLC basic components

- Pump \rightarrow high pressure, high accuracy pump
- Injector \rightarrow manual, autosampler
- Column \rightarrow a lot of types
- Detector \rightarrow (UV, RI, ELSD, EC, MS)
- PC/Recorder

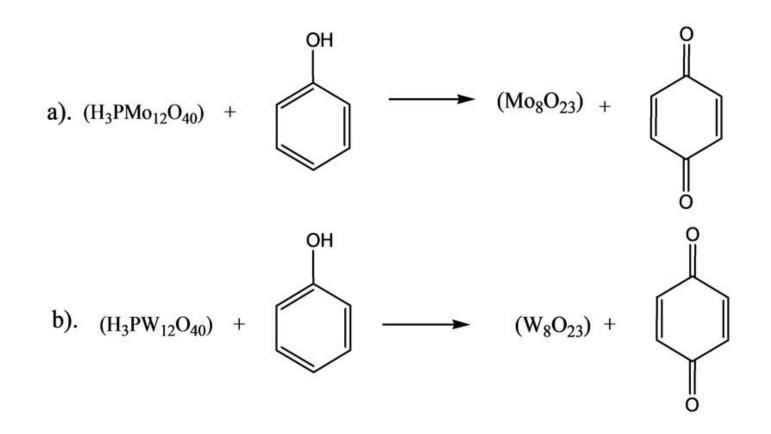

HPLC utilization

Identify compounds

HPLC utilization


Quantify compounds

Peak area of Compound A Peak area of Compound A Peak area of Compound A


HPLC utilization

Preparation of pure substance

Total phenolic content

- Total phenolic content (TPC) using Folin-Ciocalteu reagent is a widely employed method for rough estimating of an amount of phenolic compounds
- Developed by Otto Folin and Vintila Ciocalteu since 1927
- Phosphomolybdic acid (H₃PMo₁₂O₄₀)/ phosphotungstic acid (H₃PW₁₂O₄₀) is reduced by phenolic hydroxyl in alkaline solution (pH ~10) to form tungsten and molybdenum blue

- The dye can be measured at 760 nm.
- Gallic acid is often used as reference and the result is expressed as "mg gallic acid equivalent (GAE)"

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology (Vol. 299, pp. 152-178): Academic Press

Interference

- compounds other than phenolics, such as reducing sugars (e.g., glucose, fructose, maltose) and ascorbic acid, are also able to reduce the FC reagent
- We found that Maillard reaction products also react with FC, and this might be affect the results of TPC in dried products (unpublished data)

heagen					molar mass
compound	molar mass	GAE	GAE	compound	(g/mol)
compound	(g/mol)	(mass)	(molar)		
phenolic compounds				D-SUCROSE	342.30
caffeic acid	180.16	1.00	0.958	egg albumin	\sim 65 kDa
chlorogenic acid	354.31	0.722	1.36	bovine serum albumin	69.3 kDa
curcumin	368.40	0.722	1.41	aldehydes, ketones, and carboxylic acids	140.17
ellagic acid	302.19	1.32	2.12	cinnamic acid	148.17
ferulic acid	194.18	1.05	1.08	citric acid oxalic acid	192.12
gallic acid	188.14	1.00	1.00	quinic acid sodium tartrate α-ionone	126.07 197.17
quercetin	338.00	1.16	2.08		197.17
resveratrol	228.25	1.01	1.23		196.07
rutin	610.52	0.568	1.53		
salicylic acid	138.12	0.357	0.262	2,3-butanedione cinnamaldehyde	86.09 132.16
tannic acid	1701.00	0.878	9.04	citronellal	154.25
thiol derivatives				inorganic salts	154.25
amifostine	214.22	0.378	0.430	iron(II) chloride	126.73
captopril	217.29	0.323	0.373		125.84
cysteamine HCI	113.61	0.304	0.184	manganese(II) chloride sodium nitrite	85.01
glutathione	307.30	0.161	0.263	sodium sulfite	126.04
MPG	163.20	0.342	0.297	potassium iodide	126.04
N-acetylcysteine	163.20	0.395	0.378	miscellaneous compounds	100.00
penicillamine	149.21	0.333	0.264	caffeine	194.19
PTCA	175.25	0.180	0.141	cystamine ^a	225.20
RibCys	253.23	0.202	0.271	glutathione disulfide	612.60
WR-1065	134.24	0.375	0.268	menthol	
vitemin devivetives				mentioi	156.27

Table 1. Reactivity of Various Substances with Folin-Ciocalteu Phenol Reagent

Table 1. Continued

GAE

(mass)

0.000

0.0163

0.0282

0.000

0.000

0.000

0.000

0.000

0.0043

0.180

0.000

0.000

0.149

0.0432

0.000

0.0506

0.0224

0.000

0.000

0.000

0.000

GAE

(molar)

0.000

5.63

10.39

0.000

0.000

0.000

0.000

0.000

0.0044

0.00824

0.000

0.000

0.100

0.0289

0.000

0.0339

0.0198

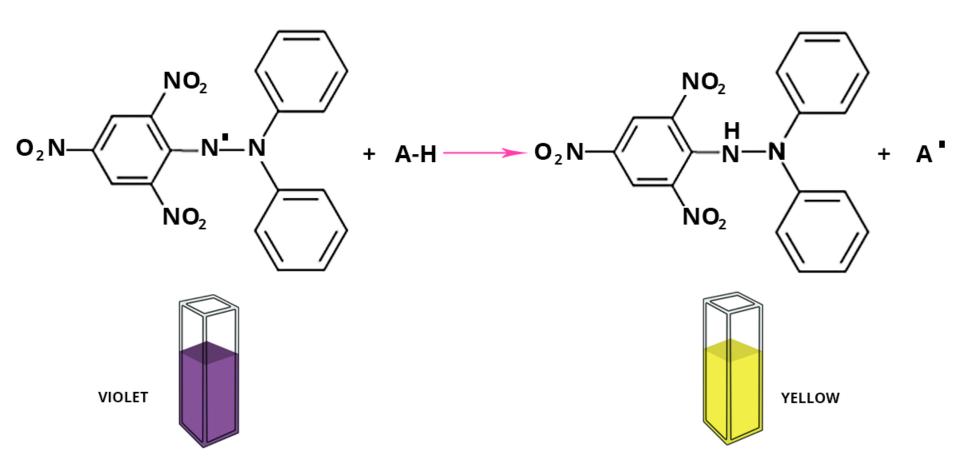
0.000

0.000

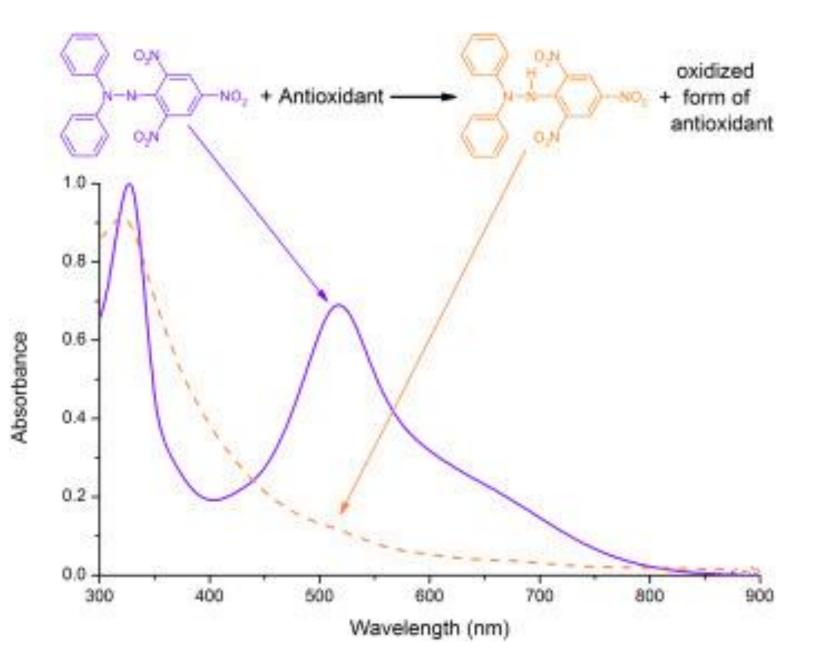
0.000

0.000

Everette et al. suggested that FC assay should be viewed as antioxidant capacity rather than phenolic compound content


https://doi.org/10.1021/jf1005935

DPPH assay


- Easy, economic and rapid method to evaluate the radical scavenging activity of substance
- 2,2-Diphenyil-picrylhydrazyl (DPPH) is a stable radical possesses a purple color, with a maximum absorption at around 515-519 nm in solvent such as methanol or ethanol
- Scavenging DPPH by antioxidant will reduce the absorbance

Radical form

Non-Radical form

http://chimactiv.agroparistech.fr/en/aliments/antioxydant-dpph/principe

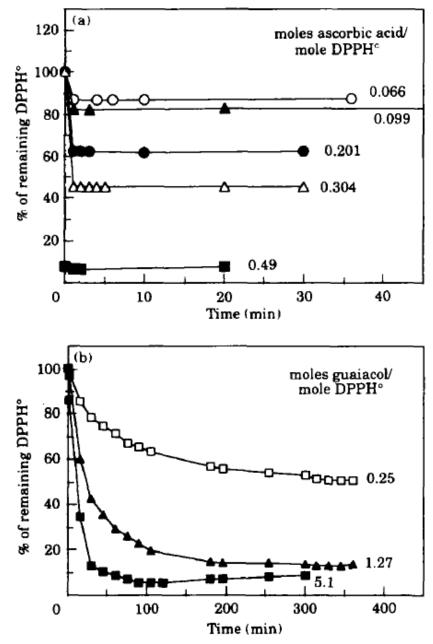
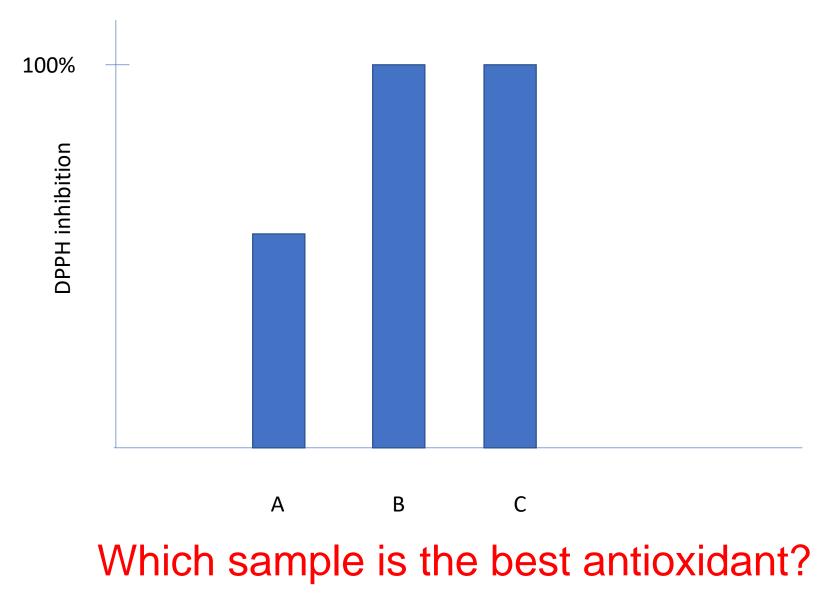


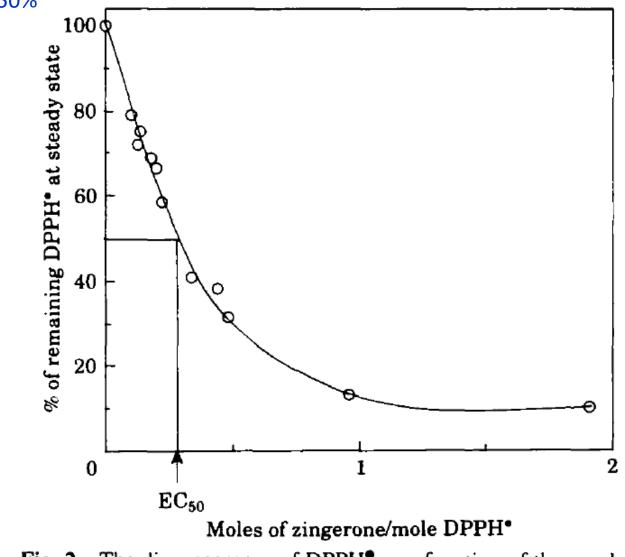
Fig. 1 Examples of the two observed types of reaction kinetics. (a) Kinetic behaviour of ascorbic acid; (b) kinetic behaviour of guaiacol https://doi.org/10.1016/S0023-6438(95)80008-5

Expression the result

Scavenging capacity


% inhibition =
$$\frac{A0 - A1}{A0} \times 100$$
 $A0 = a$
A1 = a

A0 = absorbance of DPPH+blank A1 = absorbance of DPPH+ sample


Caution:

- The value depends on the concentration of DPPH solution and of the sample used
- When the value near 100%, it's possible that too high concentration of the sample is used.

Each 100 mg/L

EC50 = amount of antioxidant necessary to decrease the initial DPPH concentration by 50%

Fig. 2 The disappearance of DPPH[•] as a function of the number of moles of zingerone/mole DPPH[•]

https://doi.org/10.1016/S0023-6438(95)80008-5

