

Health-promoting bioactive compounds in dried food products

Associate Professor Dr. Pramote KHUWIJITJARU

Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University

Compositions of foods

Vegetables

- Water (moisture) 90-95%
- Protein 1-2%
- Fat < 1%
- Ash (mineral) < 1%
- Carbohydrate 5%

Fruits

- Water (moisture) 80-95%
- Protein 1%
- Fat < 1%
- Ash (mineral) < 1%
- Carbohydrate 5-15%

Energy, moisture and macronutrient content of selected African leafy vegetables (values per 100 g edible portion, fresh weight basis).

Table 1Energy, moisture and macronutrient content of selected African leafy vegetables (values per 100 g edible portion, fresh weight basis).

African leafy vegetables	Energy kJ (kcal)	Moisture (g)	Protein (g)	Fibre (g)	Fat (g)	Carbohydrates (g)
Adansonia digitata	289 (69) ^a	77 ^a	4 ^a	3§ ^a	0.3 ^a	16† ^a
Amaranthus sp.	113-222 (27-53) ^b	83-91 ^b	4-6 ^b	$3\delta^{b}$	$0.2 - 0.6^{b}$	4-8† ^b
Arachis hypogea	297 (71) ^c	82 ^c	4 ^c	8§ ^c	0.5 ^c	13† ^c
Bidens pilosa	163–222 (39–53) ^{a,b,d}	85-88 ^{a,b,d}	$3-5^{a,b,d}$	$3-68^{a,b,d}$	$0.4 - 0.6^{a,b,d}$	2‡ ^d , 8† ^{a,b}
Brassica sp.	100-142 (24-34) ^c	92-94 ^c	1-2 ^c	2-4§ ^c	$0.1-0.3^{\rm b}$	5-6† ^c
Ceratotheca triloba	259 (62) ^b	85 ^b	2 ^b	$2\S^{\mathrm{b}}$	2.1 ^b	$8\dagger^{\mathrm{b}}$
Chenopodium album	212-247 (44-59) ^{b,d}	83-85 ^{b,d}	4-5 ^{b,d}	$2\delta^{\mathrm{b,d}}$	0.8^{b}	2‡ ^d , 8† ^b
Cleome sp.	142–218 (34–52) ^{a,b,d}	85-88 ^{a,b,d}	5 ^{a,b,d}	1−5§ ^{a,b,d}	$0.3 - 0.9^{a,b,d}$	2‡ ^d , 5† ^{a,b}
Cucurbita pepo	109 (26) ^d	93 ^d	3^{d}	$2\S^d$	0.7^{d}	$0.4\ddagger^{ m d}$
Emex australis	151 (36) ^b	89 ^b	5 ^b	$2\S^{\mathrm{b}}$	0.6^{b}	$3\dagger^{\mathrm{b}}$
Galinsoga parviflora	171 (41) ^b	89 ^b	4^{b}	1§ ^b	$0.5^{\rm b}$	$5\dagger^{\mathrm{b}}$
Ipomoea batatas	188–276 (45–66) ^{a,c,d}	83–88 ^{a,c,d}	4-5 ^{a,c,d}	$2-58^{a,c,d}$	0.2-1.1 ^{a,c,d}	4‡ ^d , 10† ^c
Justicia flava	213 (51) ^b	84 ^b	3 ^b	1§ ^b	0.4^{b}	$9\dagger^{\mathrm{b}}$
Lesianthera africana	305 (73) ^e	77 ^e	3 ^e	4**e	1.1 ^e	_
Manihot esculenta	381 (91) ^b	72 ^b	7 ^b	$4\S^{\mathrm{b}}$	1.0 ^a	18† ^b
Momordica sp.	222 (53) ^a	85 ^a	5 ^a	3§ ^a	5.0 ^b	7† ^a
Portulaca oleracea	96 (23) ^b	93 ^b	3 ^b	1§ ^b	0.3 ^b	$3\dagger^{\mathrm{b}}$
Senna occidentalis	351 (84) ^b	77 ^b	7 ^b	$3\delta^{b}$	2.2 ^b	$9\dagger^{\mathrm{b}}$
Solanum sp.	228-241 (55-58) ^{b,d,g}	$83-90^{b,d,g}$	3-5 ^{b,d,g}	1^{**g} , $2-6\S^{b,d}$	0.6^{b}	2‡ ^d , 9† ^b
Spinacea oleracea	125 (30) ^d	92 ^d	3^{d}	$3\S^d$	$0.4^{\rm d}$	1‡ ^d
Vernonia sp.	167-343 (40-82) ^{a,f}	$79 - 89^{a,f}$	$3-5^{a,f}$	$2-58^{a,f}$	-	_
Vigna unguiculata	180 (43) ^d	86 ^d	5 ^d	$4\S^d$	0.4^{d}	$2\ddagger^d$

^{&#}x27;§' represent dietary fibre, "*" represent crude fibre, "†' represent carbohydrate value by difference, "‡' represent available carbohydrate, '-' represent not determined.

https://doi.org/10.1016/j.jfca.2010.05.002

Fiber

- Fiber > not digested/absorbed by human gut
- Increase fecal bulk, absorb fat and cholesterol from diet
- Fiber is stable during drying
- Dried fruit and vegetables increase fiber intake

Fresh pineapple

Dried pineapple

Vegetable, fruit and nuts are sources of fiber which is a good selling point of dried products

KALE เคล

Healthiest vegetable on earth

- ล้างสารพิษ และ ปรับสมดุลกรด ต่างในร่างกาย ช่วยให้นอนหลับสนิท
- ดีต่อระบบขับถ่าย มีวิตามิน A, C, K สูงมาก
- ห่วยลดคลอเรสเตอรอล

ปริมาณที่แนะนำต่อ1หน่วยบริโภค: 1 ช้อนชา (5 กรัม)

เมนู: ใส่ในเครื่องดื่ม เช่น น้ำพัก, น้ำปั่น หรือ โรยในอาหาร เช่น พัสพัก

Remarks: พู้ป่วยโรคไทรอยด์ไม่ควรบริโภค

@ORGANIC_SEEDS C 086-322-4038

Rice seasoning powder from vegetables

Sunchoke is a source of "inulin", a soluble fiber which promotes growth of good bacteria in human gut (prebiotics)

BioKing

Organic Jerusalem Artichoke Powder

Made from Jerusalem artichoke juice

- Pleasantly nutty taste
- Ideal beverage additive

Dried sunchoke

Vitamins and minerals

- Vegetable and fruit are good sources of important vitamins e.g. vitamin C and vitamin A
- Minerals e.g. ferric, phosphorus, calcium, potassium are stable during drying

Recommended daily nutrient intakes (RNI) of selected micronutrients for different age groups as released by the FAO/WHO (2001).

Table 2Recommended daily nutrient intakes (RNI) of selected micronutrients for different age groups as released by the FAO/WHO (2001).

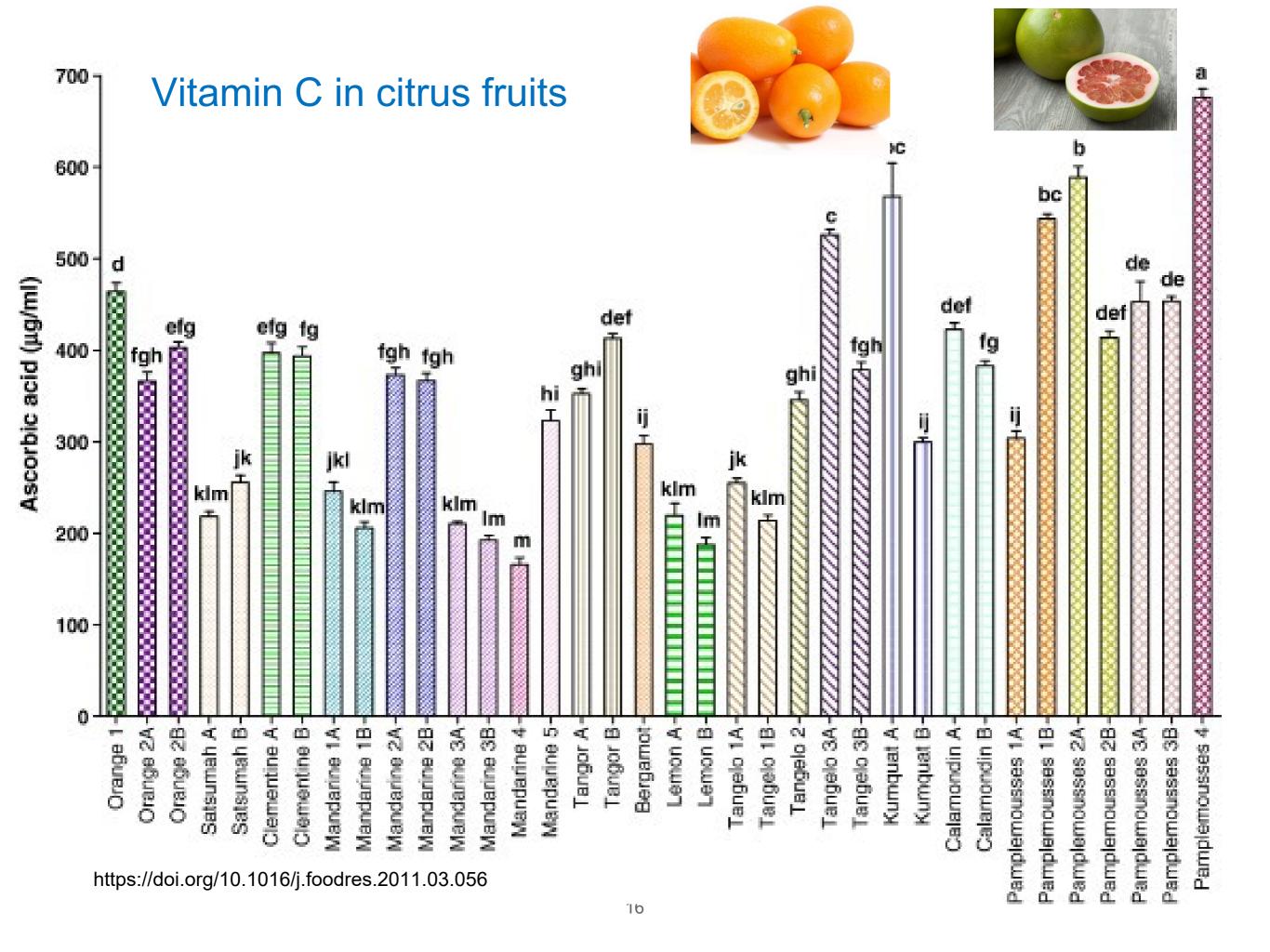
Age (yrs)	Sex	Vitamin A (μg RE)	Vitamin C (mg)	Riboflavin (mg)	Folate (µg)	Iron ^a (mg)	Zinc ^b (mg)	Calcium (mg)	Magnesium (mg)
1–3		400	30	0.5	150	5.8	8.3	500	60
4-6		450	30	0.6	200	6.3	9.6	600	76
7–9		500	35	0.9	300	8.9	11.2	700	100
10–18	Male	600	40	1.3	400	14.6 (10–14 yrs) 18.8 (15–18 yrs)	17.1	1300	230
	Female	600	40	1.0	400	32.7 (10–14 yrs) 31.0 (15–18 yrs)	14.4	1300	220
19-65	Male	600	45	1.3	400	13.7	14.0	1 000	260
	Female	500	45	1.1	400	29.4	9.8	1 000	220

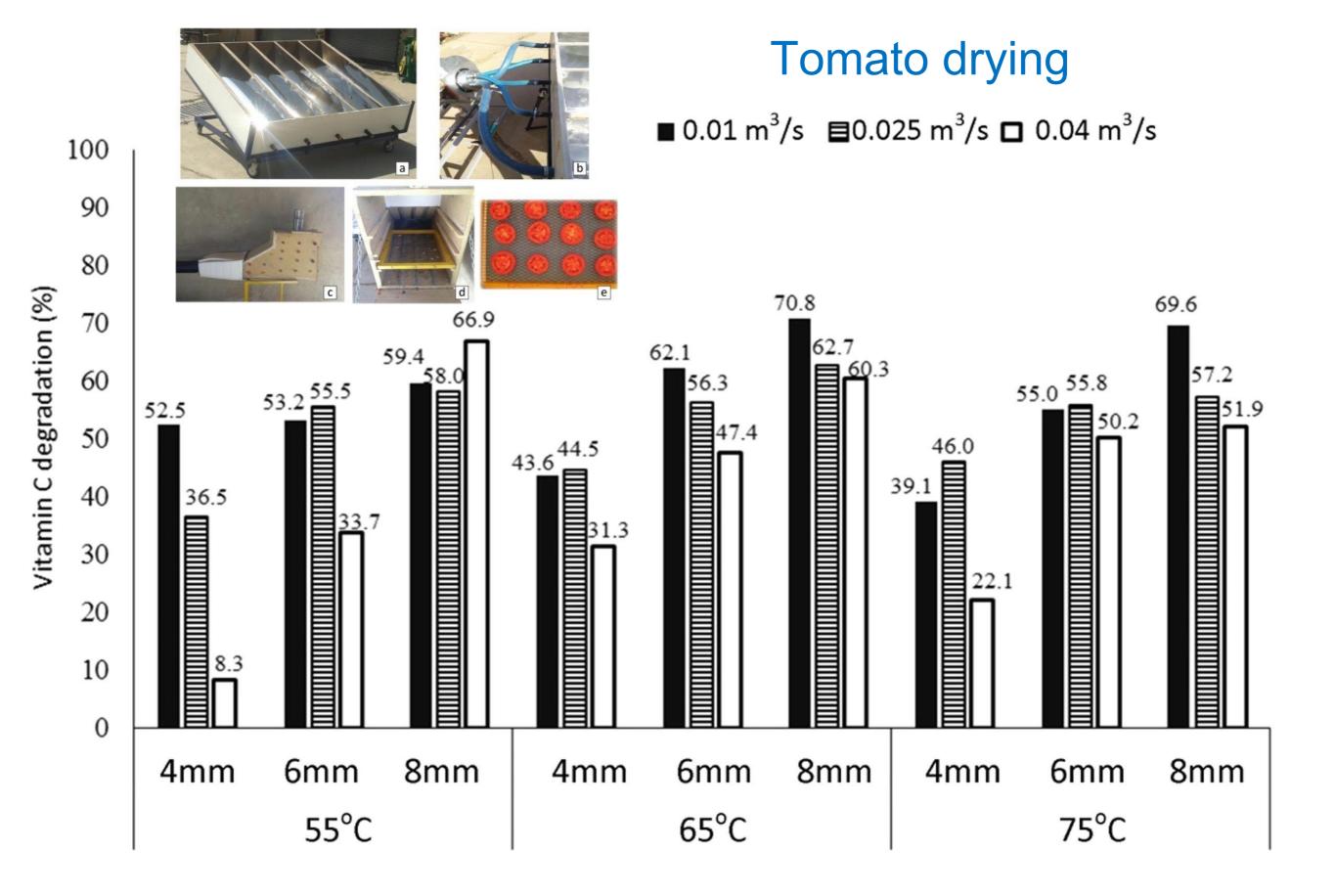
^a Based on a diet with 10% iron bioavailability.

https://doi.org/10.1016/j.jfca.2010.05.002

^b Based on a diet with low zinc bioavailability.

Vitamin content of selected African leafy vegetables (values per 100 g edible portion, fresh weight basis).


Table 3Vitamin content of selected African leafy vegetables (values per 100 g edible portion, fresh weight basis).


African leafy vegetables	Vitamin A (μg RE)	Ascorbic acid (mg)	Riboflavin (mg)	Folate (µg)
Adansonia digitata	_	52 ^b	_	_
Amaranthus sp.	327 ^a	46-126 ^{a,c}	0.1-0.4 ^{a,b}	64 ^a
A. hypogea	-	87 ^d	_	_
B. pilosa	301-985 ^{a,b}	23 ^{a,c}	0.2 ^a	351 ^a
Brassica sp.	-	30-113 ^{a,d}	0.0-0.2 ^{a,d}	16 ^a
C. album	917 ^a	31 ^a	0.3 ^a	30 ^a
Cleome sp.	1200 ^a	13-50 ^{a,b}	0.1 ^a	346 ^a
Cucurbita pepo	194 ^a	11 ^a	0.1 ^a	36 ^a
I. batatas	103-980 ^{a,b}	11-70 ^{a,b,d}	0.3-0.4 ^{a,d}	80 ^a
M. esculenta	1970 ^b	311 ^b	0.6^{b}	_
Momordica sp.	-	4 ^c	_	_
Solanum nigrum	1070 ^a	2^{a}	0.3 ^a	404 ^a
Sonchus oleraceus	985 ^a	25 ^a	_	_
S. oleracea	669 ^a	28 ^a	0.2 ^a	194 ^a
Vernonia sp.	-	51–198 ^{b,e}	0.3 ^a	457 ^a
V. unguiculata	99 ^a	50 ^a	0.2 ^a	141 ^a

https://doi.org/10.1016/j.jfca.2010.05.002

Vitamin C

- Fruits and several vegetables contain high amount of vitamin C
- Vitamin C tends to degrade after drying and also losses during washing, blanching

Vitamin A

- Fruit and vegetable contain beta-carotene which can be converted into "vitamin A" in human body
- Very necessary for eyes health, protecting from vision loss and blindness
- Papaya, carrot, corn, mango, other green vegetables

Dried mango was found to contain high amount of beta-carotene

Table 2: Percentage loss of β -carotene and vitamin C of cowpea leaf and mango fruit samples dried under solar radiation by three different methods in Uganda

Fruit/vegetable	Pro-vitamin / Vitamin	Visqueen-covered solar dryer	Polyethylene- covered solar dryer	Open-sun drying
Mango fruit	β-Carotene	73.22	84.07	94.24
	Vitamin C	53.31	66.95	84.54
Cowpea leaves (un-l	olanched)			
	b-Carotene	44.43	51.17	63.16
	Vitamin C	66.04	75.94	82.29
Cowpea leaves (blanched)	β-Carotene	24.49	34.42	53.37
1 ,	Vitamin C	75.77	82.03	86.15

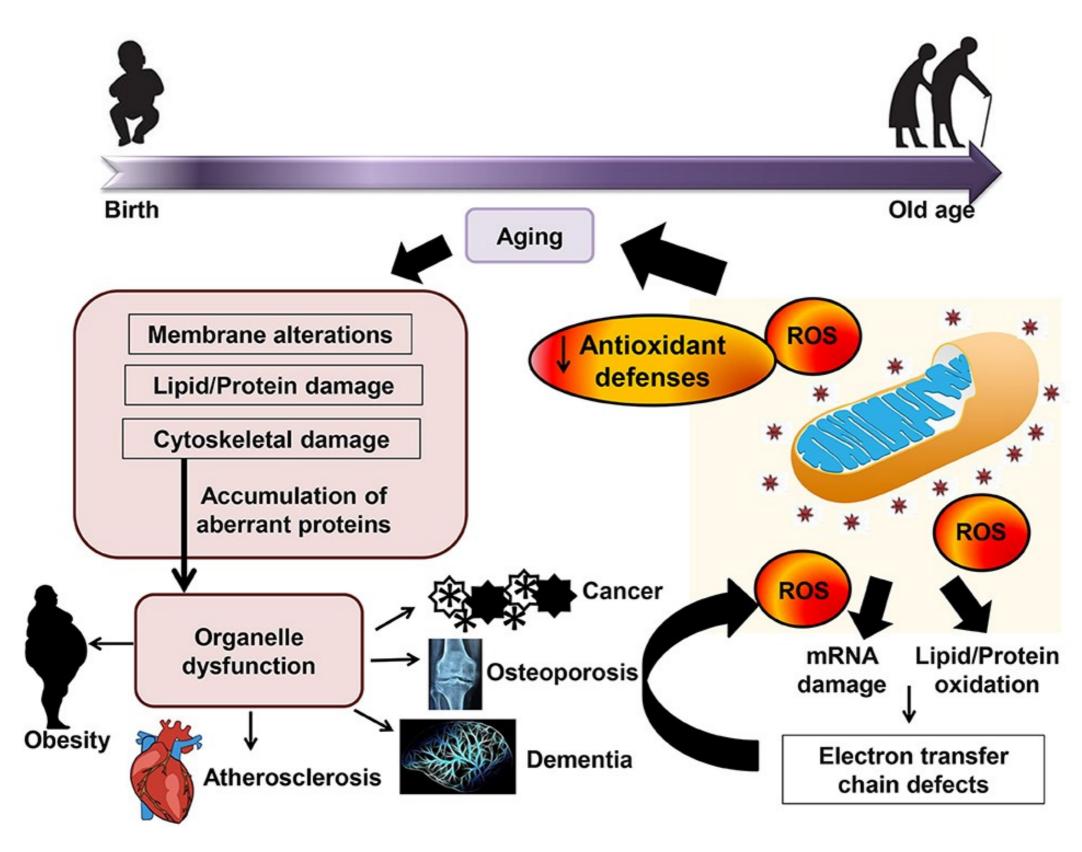
Ndawula, J et al. "Alterations in fruit and vegetable beta-carotene and vitamin C content caused by open-sun drying, visqueen-covered and polyethylene-covered solar-dryers." *African health sciences* vol. 4,2 (2004): 125-30.

Table 5. Retinol equivalents (RE) and percentage contribution to the recommended daily intake level of vitamin A of an edible portion of vegetable relish^a

	Solar-dried		Open sun-dried		
Vegetable	Retinol equivalents (μg)	Contribution to daily vit. A req. ^b (%)	Retinol equivalents (µg)	Contribution to daily vit. A req. ^b (%)	
Mgagani	1514	275	943	171	
Amaranth	882	160	718	131	
Cowpea	907	165	579	105	
Sweet potato	1038	189	833	151	
Pumpkin	833	152	515	94	
Ngwiba	965	175	595	108	
Nsonga	1066	194	799	145	
Maimbe	662	120	530	96	
Mean	983	179	689	125	

Mulokozi, G. & Svanberg, U. Plant Foods Hum Nutr (2003) 58: 1. https://doi.org/10.1023/B:QUAL.0000041153.28887.9c

Dried vegetables for conveniences of cooking



Bioactive compounds

- Plants contains several health beneficial compounds
- They are called bioactive compounds
- Antioxidants, anticancer, etc
- Usually the effects are not immediate, some need more scientific proving
- Processed into several "dietary supplements"

Effect of oxidative stress and the interaction of aging and agerelated diseases

Carotenoids


- Carotenoids are natural pigments give yellow, orange, red color in fruits and vegetables
- Provitamin A (beta-carotene)
- Nonprovitamin A (Lutein, Zeaxanthin, Lycopene)

Sample	Lycopene losses (%)
Fresh	0
Osmotic dehydrated (OD)	0
OD-vacuum dried	2.4
vacuum dried	3.2
Air dried	3.9

Degradation of lycopene in tomato powder

Storage (day)	Conditions	Lycopene retention (%)
Initial powder		100
30	N ₂ , 20°C	90
	Air, 20°C	46.3
80	N ₂ , 20°C	78.5
	Air, 20°C	28.7
120	N ₂ , 20°C	76.5
	Air, 20°C	25.5
210	N ₂ , 20°C	69.8
	Air, 20°C	23
385	N ₂ , 20°C	65.8
	Air, 20°C	21.8

- Lycopene degraded with time
- Air (oxygen) accelerated the degradation

Phenolic compounds

- Found in all plants
- Divided in to several classes
- Possess various activities e.g. antioxidant, antiinflammatory, reduce cholesterol etc.
- Phenolic compounds are quite stable during drying

Tea is rich in catechin

Phenolic substances in selected foodstuffs.

hydroxycinnamic acids (8–12)

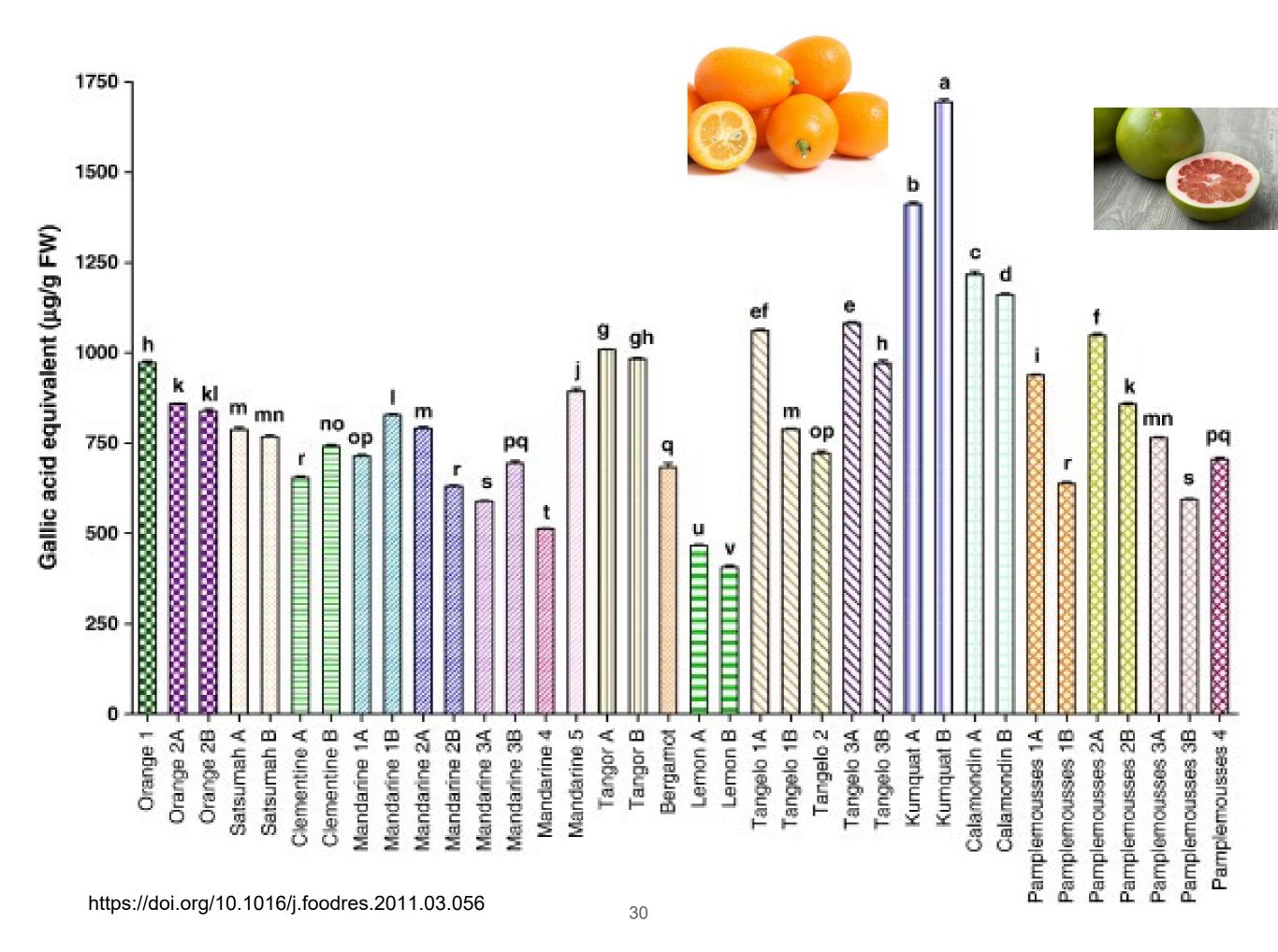
flavones (18)

tannins (23-27)

isoflavones (19)

flavonols (16-17)

proanthocyanidins and anthocyanins (23-25)



catechins (14-15)

Anthocyanins

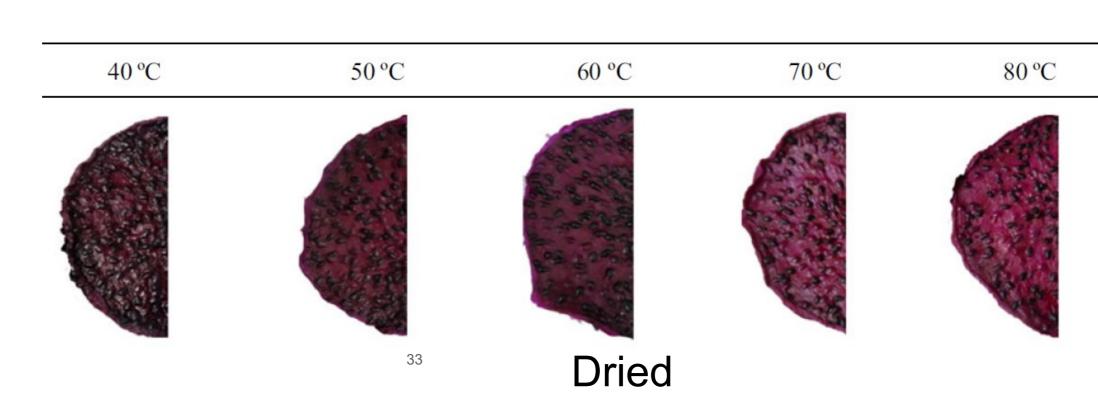
- One class of phenolic compound
- Give purple, blue, red color
- Good antioxidant activity

purple sweet potato

butterfly pea flower

Roselle (Hibiscus)

Red cabbage



Betacyanins

- Another red-purple pigment
- Red-flesh dragon fruit, beetroot
- Nitrogen-containing anthocyanins
- Antioxidant activity
- Quite stable during drying

Medicinal plant

Moringa (Moringa oleifera)

Vitamin A, C, Protein

https://doi.org/10.1016/j.fshw.2016.04.001

Moringa tea

Moringa powder

TABLE 1 Effects of drying on the phytochemical constituents of *Moringa oleifera* leaf

Parameters	Freeze-dried (mg/g)	Air-dried (mg/g)	Sun dried (mg/g)	Oven dried (mg/g)
Phenolics	68.75 ± 0.00 ^d	59.38 ± 0.42 ^c	50.00 ± 0.00^{ab}	46.88 ± 1.42 ^a
Flavonoid	62.50 ± 0.89 ^d	58.33 ± 0.00 ^{cd}	45.83 ± 0.89 ^b	25.00 ± 0.00^{a}
Vitamin C	52.94 ± 0.31 ^d	41.17 ± 0.31 ^c	35.29 ± 0.63 ^{bc}	23.53 ± 0.60^{a}
Tannin	0.06 ± 0.03	0.05 ± 0.02	0.05 ± 0.03	0.05 ± 0.03
Phytate	$70.26 \pm 2.40^{\circ}$	89.82 ± 0.98 ^d	60.98 ± 0.00^{ab}	58.50 ± 1.42^{a}
Saponin	16.36 ± 0.92 ^c	16.36 ± 0.00°	10.91 ± 0.82 ^b	7.27 ± 0.71 ^a
Alkaloid	12.8 ± 1.71 ^c	$13.4 \pm 0.00^{\circ}$	5.00 ± 0.92^{a}	10.6 ± 2.41 ^b
Oxalate	9.96 ± 0.84 ^c	9.09 ± 0.72 ^c	6.66 ± 0.00^{a}	8.19 ± 0.60 ^b
Cardenolides	13.68 ± 0.71 ^b	11.72 ± 1.90 ^b	12.53 ± 2.40 ^b	8.17 ± 1.71 ^a
Cardiac glycosides	17.36 ± 1.31 ^b	16.72 ± 1.91 ^b	14.79 ± 2.81 ^a	14.79 ± 1.82 ^a

Note. Values represent mean \pm standard deviation of triplicate experiments. Superscripts with different alphabets along the same row are significantly (p < 0.05) different.

https://dx.doi.org/10.1002%2Ffsn3.770

Island Herb Garden Island Herb Garden (Island Herb Garden) 90 Supplements (From Itojima and Izu Oshima / Pesticide-free Capsules) (3 Moringa Seeds Gift

Brand: アイランドハーブガーデン (Island herb garden)

★★★☆

24 ratings

Price: ¥2,180 (¥24 / 粒) + ¥1,482 shipping

Dosage Form カプセル

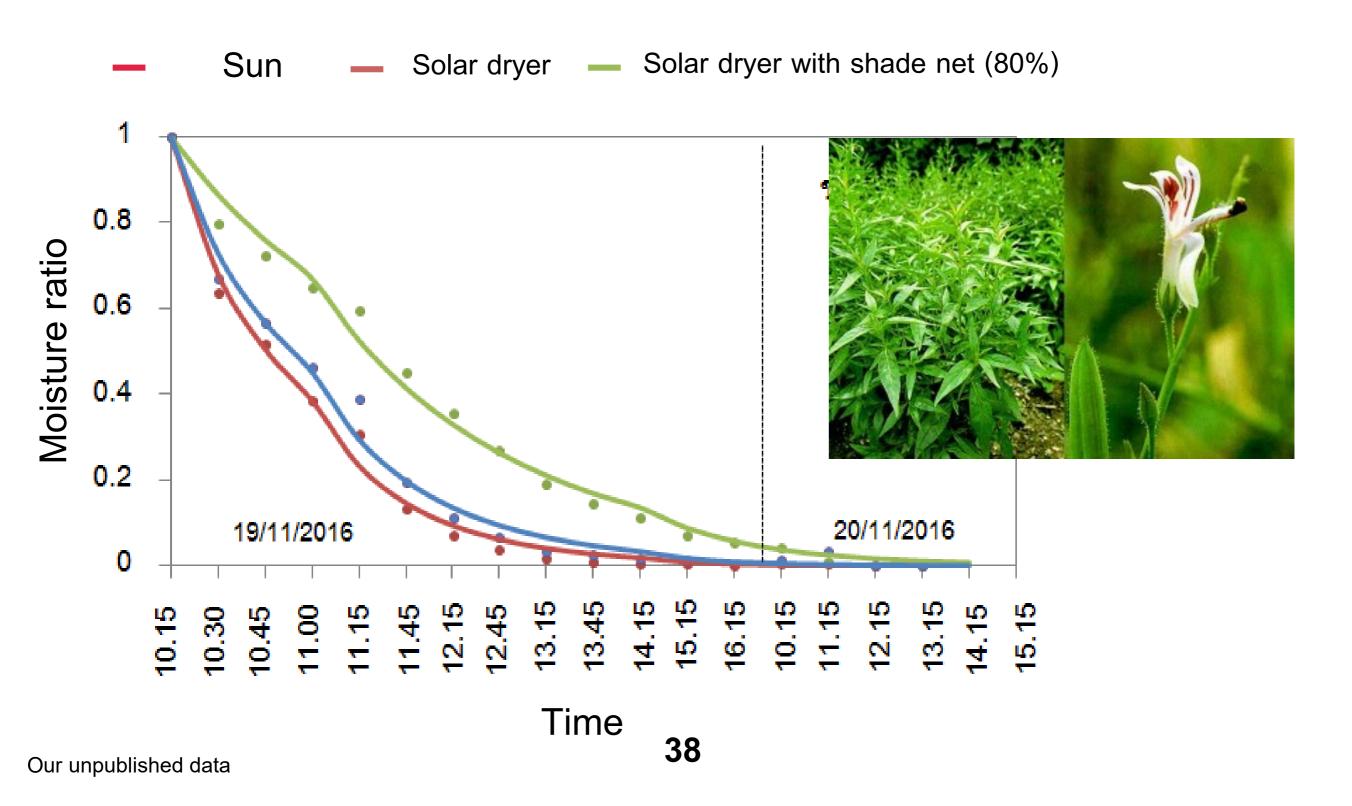
Brand アイランドハーブガーデン (Island herb

garden)

Unit Count 90 粒

Ingredients モリンガ粉末/ゼラチン(カプセル剤)

About this item


- Moringa, known as Miracle Tree, is nutritious and a super food containing more than 90 nutrients. A botanical supplement filled with full Moringa
- Recommended for those who feel irregular and lack of nutrition, those who are concerned about their own odor, or want to be prepared for their energy
- Name: Moringa powder-coated food; Contents: 90 capsules
- Shelf Life: 24 months from date of manufacture. Storage Method: Store in a place that is away from direct sunlight. Avoid high temperatures and humidity

Example of presentation of the nutrient and bioactive compounds of product

Retention of bioactive compounds in medicinal plant/herb after drying in parabola solar dryer

Green chiretta (Andrographis paniculata)

Dried green chiretta

Sun

Solar dryer

Solar dryer with shade net (80%)

green chiretta contains andrographolide which a bioactive effective for treatment of common cold and even COVID-19 patient with mild symptoms

Sample	Andrographolide	% chango ^{ns}	
Sample	(mg/100 g DW sample)	%change ^{ns}	
Sun	2548.68 ± 45.5 ^a	-36.27 ± 7.77	
Solar dryer with shade	0057 454775 008	00 04 17 04	
net (80%)	2657.45 ± 775.20 ^a	-30.61 ± 17.64	

cassumunar ginger (Zingiber montanum)

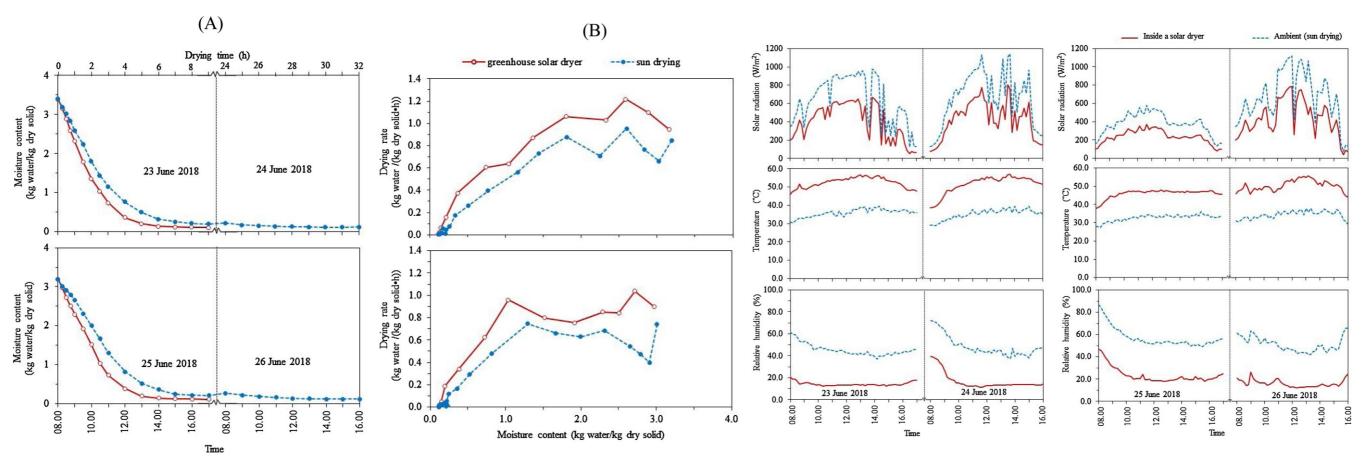
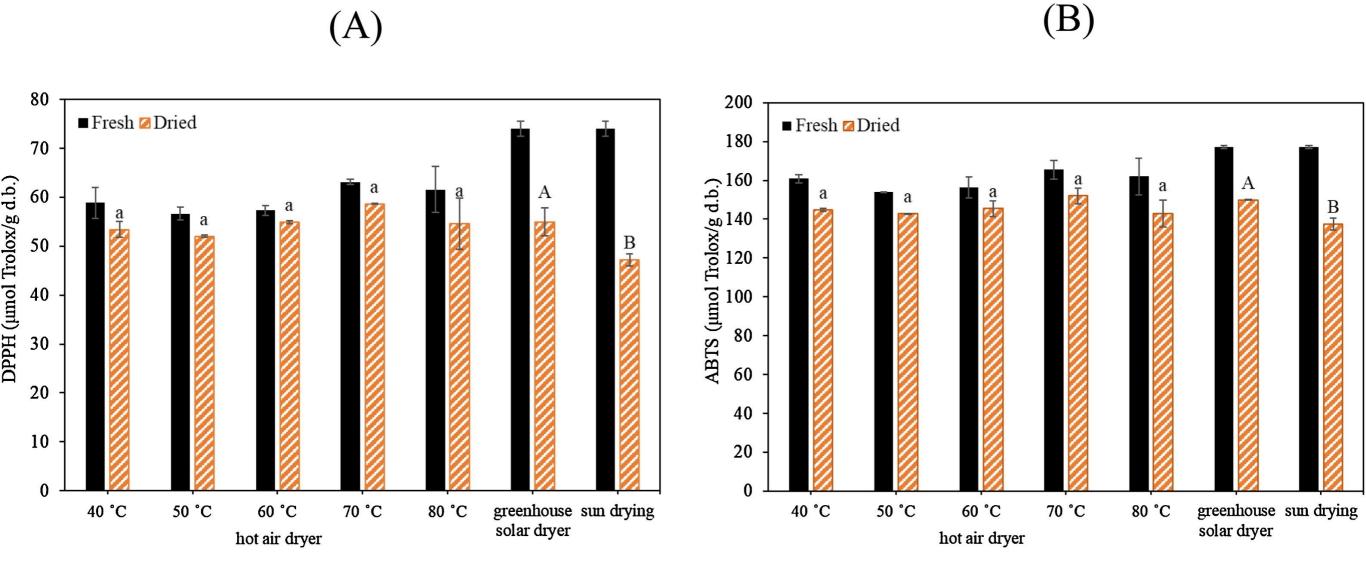



Table 3
Curcumin, compound D, and essential oil yields of the fresh and dried cassumunar gingers as affected by drying conditions.

Drying method	Curcumin	Curcumin (mg/g d.b.)		Compound D (Relative peak area)		Oil yield (mL/100 g d.b.)	
	(mg/g d.b.)						
	Fresh ^{ns}	Dried	Fresh ^{ns}	Dried ^{ns}	Fresh ^{ns}	Dried	
Hot air dryer							
40 °C	4.93 ± 0.14	8.99 ± 0.44^{a}	0.20 ± 0.02	0.18 ± 0.04	11.59 ± 0.49	8.43 ± 0.27^{ab}	
50 °C	4.25 ± 0.46	8.24 ± 1.06^{ab}	0.22 ± 0.03	0.21 ± 0.03	10.66 ± 0.27	8.77 ± 0.50^{ab}	
60 °C	4.65 ± 0.02	7.66 ± 0.60^{bc}	0.20 ± 0.01	0.22 ± 0.01	11.3 ± 0.55	9.28 ± 0.18^{a}	
70 °C	4.46 ± 0.30	7.32 ± 1.03^{c}	0.20 ± 0.03	0.18 ± 0.03	11.43 ± 0.98	8.26 ± 0.41^{bc}	
80 °C	4.33 ± 0.36	6.34 ± 1.00^{d}	0.21 ± 0.01	$0.19 \pm 0.00_4$	11.85 ± 0.77	7.61 ± 0.41^{c}	
Greenhouse solar dryer	3.70 ± 0.04	1.33 ± 0.10^{A}	0.21 ± 0.01	0.25 ± 0.01	10.89 ± 0.19	7.68 ± 0.15^{A}	
Sun drying	3.70 ± 0.04	0.54 ± 0.04^{B}	0.21 ± 0.01	0.27 ± 0.02	10.89 ± 0.19	7.82 ± 0.04^{A}	

Data are expressed as mean \pm SD. Different superscript capital letters indicate significant difference between the greenhouse solar dryer and the sun drying and different lowercase letters indicate significant difference between drying temperatures (p \leq 0.05).

**represents not significant difference among drying methods (p > 0.05).

